Homework 2

PHYS 485: Fall 2017
Due Date: 09/20/2017

To recieve fully credit please write legibly and clearly, show all required steps and calculations and answer any explicit questions in full sentences.

I. COMPLEX NUMBERS AND PROBABILITIES [7]

1. Suppose that the probability amplitude for a photon to arrive at a detector is $1 /(1-i)$. What is the probability that the detector records a photon? What is the probability of detecting a photon if the probability amplitude equals $1 /(1+i)+i ?[2]$
2. Express the complex numbers $z_{1}=(1+i) / \sqrt{2}$ and $z_{2}=i$ in the form $r e^{i \phi}$. [2]
3. Suppose that the probability amplitude is time-dependent: $z_{3}(t)=\left(1+e^{i \omega t}\right) / 2$. Plot this probability amplitude as an arrow in the complex plane for $t=0, \pi / \omega, \pi / 4 \omega$, and $\pi / 3 \omega$. What is the probability at these points in time? [3]

II. SCHRODINGER EQUATION [8]

1. Suppose that ψ_{1} and ψ_{2} are two orthogonal, normalized solutions of the Schrodinger equation. Given some complex numbers α and β, show that $\phi=\alpha \psi_{1}-\beta \psi_{2}$ is also a solution of the Schrodinger equation. [1]
2. What does the relationship between α and β have to be for ϕ to be normalized? [1]
3. If this relationship is satisfied, is $\phi^{\prime}=\alpha \psi_{1}+\beta \psi_{2}$ also a normalized solution of the Schrodinger equation? Explain. [1]
4. Normalize $\psi_{3}(x)=\sin (2 \pi x / L)$ and $\psi_{4}(x)=\sin (6 \pi x / L)$ assuming that both functions vanish for $x<0$ and $x>L$. [2]
5. Verify that $\psi_{5}(x)=e^{i(k x-\omega t)}$ is a solution to the Schrodinger equation for a free particle by showing that

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{5}}{\partial x^{2}}=i \hbar \frac{\partial \psi_{5}}{\partial t}
$$

Is $\psi_{6}=A \cos (k x-\omega t)$ a solution as well? Plug it into the Schrodinger equation and corroborate your answer. [3]

III. AVERAGES AND DEVIATIONS [9]

1. Consider a group of 8 students buying coffee at the Illini Union over the course of a busy workday. In this group 3 people only have one coffee a day, 3 order two coffees, and two students order three. Treating the number of coffees consumed as a discrete variable, sketch its probability distribution for this group. [1]
2. What is the expectation value for the number of coffees consumed in this group? Is there a person in this group that actually consumed that many cups of coffee i.e. if you perfomed a measurement such as asking each person how much coffee they had had on that day could your measurement ever produce this number? [2]
3. Calculate the standard deviation in this situation. [2]
4. Suppose another extremely sleep deprived student joins the group and [1] ends up consuming six coffees throughout the course of the day. How does the shape of the probability distribution change? Sketch it.
5. Calculate the expectation value $\langle x\rangle$ and the standard deviation Δx for the normalized wavefunction [3]

$$
\Psi_{k}(x)= \begin{cases}\sqrt{\frac{2}{L}} \sin \left(\frac{4 \pi x}{L}\right) & 0<x<L \\ 0 & \text { otherwise }\end{cases}
$$

IV. DE BROGLIE WAVELENGTH, THE UNCERTAINTY PRINCIPLE AND FANTASY BASEBALL [6]

1. What is the de Broglie wavelength of a 0.3 kg baseball thrown at $25 \mathrm{~m} / \mathrm{s}$? [1]
2. What is the uncertainty in the position of the baseball if the uncertainty in its speed is $2 \mathrm{~m} / \mathrm{s}$? [1]
3. Now, imagine you are playing baseball in a parallel universe in which Planck's constant $h=0.663\left(10^{34}\right.$ times larger than in our universe!). What is its de Broglie wavelength in this universe? Compare this to the de Broglie wavelength of the baseball in our universe and discuss. [2]
4. What is the uncertainty in the position of the baseball in this universe if the uncertainty in the velocity is 2 m / s ? Compare this to the uncertainty in the position of the baseball in our universe and discuss. [2]
