Homework 4

PHYS 485: Fall 2017
Due Date: 10/18/2017

To recieve fully credit please write legibly and clearly, show all required steps and calculations and answer any explicit questions in full sentences.

I. REFRESHER: CALCULATING EIGENVALUES AND EIGENVECTORS OF MATRICES [8]

Consider a system of 2 coupled linear equations

$$
\begin{align*}
& 3 x+4 y=\alpha x \tag{1}\\
& 4 x-1 y=\alpha y
\end{align*}
$$

(a) Re-write this system as a matrix-based relationship in the x, y basis. In particular, find a 2×2 matrix M such that $M \vec{r}=\alpha \vec{r}$ for $\vec{r}=\binom{x}{y} \cdot[1]$
(b) Find the two eigenvalues α_{1} and α_{2} of the matrix M by solving the determinant equation [2]

$$
\left|\begin{array}{cc}
3-\alpha & 4 \\
4 & -1-\alpha
\end{array}\right|=0
$$

(c) For each of the two eigenvalues that you found, find the relationship between x and y that satifies Eq. (1). Namely, find β_{1} and β_{2} such that $y=\beta_{1} x$ and $y=\beta_{2} x$ for α_{1} and α_{2}, respectively. [2]
(d) Now, the following vector is an eigenvector of M :

$$
\begin{equation*}
\vec{v}_{1}=\binom{x}{\beta_{1} x} \tag{2}
\end{equation*}
$$

and similarly for \vec{v}_{2}. In both cases, find x by requiring that \vec{v}_{i} be normalized: $\vec{v}_{1} \cdot \vec{v}_{1}=1$ and $\vec{v}_{2} \cdot \vec{v}_{2}=1$. [2]
(e) Show that the eigenvectors \vec{v}_{1} and \vec{v}_{2} are orthogonal i.e. that their dot product vanishes. This result, combined with enforcing $\vec{v}_{1} \cdot \vec{v}_{1}=1\left(\vec{v}_{2} \cdot \vec{v}_{2}=1\right)$ in the previous part of the problem, shows that \vec{v}_{1} and \vec{v}_{2} form an orthonormal basis. [1]

II. DOUBLE WELL POTENTIAL AND TUNNELING [12]

Consider an electron in the double potential well shown in Fig. 1.
(a) Draw the ground state wavefunction, ψ_{R} (right) and ψ_{L} (left), for each of the potential wells in Fig. 1 (a). Assume that the state described by ψ_{R} has energy E_{R} and the state described by ψ_{L} has energy E_{L}. [2]
(b) Now, suppose that the barrier between the two wells is large (much larger than E_{L} and E_{R}) but finite and of height V_{0} as shown in Fig. 1 (b). Draw the wavefunctions for the ground state and the first excited state of this combined system. [2]
(c) To find the energies of eigenstates you have drawn above, we can use the formalism of Problem I. More precisely, we can write the Hamiltonian of the combined system as a matrix in the $\left(\psi_{R}, \psi_{L}\right)$ basis where ψ_{L} can be denoted by $\binom{1}{0}$ and ψ_{R} can be taken to be equal to $\binom{0}{1}$. In this basis, the Hamiltonian of the combined system reads:

$$
H=\left(\begin{array}{cc}
E_{R} & t \\
t & E_{L}
\end{array}\right)
$$

where t is the strength for tunneling through the large barrier. Following the procedure you used to find the eigenvalues and eigenvectors of M in Problem I, find the same quantities for H. [4]

FIG. 1: Double potential well discussed in Problem II.
(d) For the eigenvector corresponding to the lower energy state (smaller eigenvalue), what is the probability of the electron being described by ψ_{R} ? What is the probability of the electron being described by ψ_{L} ? [2]
(e) Suppose an electron is in the ground state of this system and gets excited to the first excited state by absorbing a photon. What is the wavelength of this photon in terms of E_{R}, E_{L}, t and fundamental constants? [2]

III. LENNARD-JONES POTENTIAL [8]

The Lennard-Jones potential is a simple model commonly used to approximate interactions (for instance van der Waals) between pairs of particles at the atomic scale. It is given by:

$$
V_{\mathrm{LJ}}(r)=V\left(\left(\frac{r_{0}}{r}\right)^{12}-2\left(\frac{r_{0}}{r}\right)^{6}\right)
$$

Here, r is the distance between the atoms. For small displacement (δr) of atoms away from the equilibrium position, this system of particles acts as a spring in that V_{LJ} exerts a restoring force such that $V(r) \approx V_{0}+\frac{1}{2} k(\delta r)^{2}$. Here you will find the spring constant k by Taylor expanding V_{LJ}.
(a) Sketch the Lennard-Jones potential [1]
(b) (i) Determine the value of $r=r_{\text {min }}$ such that $V(r)$ is minimized. Hint: Consider finding an r such that $\left.\frac{\partial V_{\mathrm{L}, J}}{\partial r}\right|_{r=r_{\text {min }}}=0$.
(ii) Use $r_{\text {min }}$ to find V_{0} in terms of r_{0} and V. [2]
(c) Calculate the value of the second derivative of $V_{\mathrm{LJ}}(r)$ at the minimum value of the potential i.e. at $r_{\text {min }}$. [1]
(d) Find the angular frequency of oscillation about $r_{\min }$ by recalling that $\omega=\sqrt{k / m}$ and the spring constant k is related to the second derivative you have calculated above. Here, m is the effective mass of the two particles combined. [2]
(e) Treating this oscillation quantum mechanically, what is the energy difference between the ground state and the first excited state? Give the value of this energy in electronvolts for $r_{0}=0.34 \mathrm{~nm}$ and $V=9.949 \mathrm{meV}$. [2]

IV. QUANTUM HARMONIC OSCILLATOR [12]

Consider a quantum harmonic oscillator of mass m having a spring constant k.
(a) (i) Explicitly write down the normalized ground state wavefunction, ψ_{0}, and the wavefunctions, ψ_{1}, ψ_{2}, of the first two excited states for this system.
(ii) What are the energies of these states?
(iii) Sketch the potential and these wavefunctions on the same plot and label them clearly. [3]
(b) Now suppose the oscillator is prepared in a superposition state, $\Psi(x, t=0)$, of the first excited state and the second excited state with equal amplitudes at $t=0$. What is $\Psi(x, t)$ in terms of ψ_{1} and ψ_{2} and their energies i.e how does this state evolve in time? Make sure to normalize $\Psi(x, t)$ as appropriate. [2]
(c) Calculate $\langle E\rangle$ for $\Psi(x, t)$. Does it depend on time? Explain. [2] Hint: No complicated calculations are necessary in this part of the problem.
(d) Calculate and plot $\langle x(t)\rangle$ for . How does it compare to the classical harmonic operator? Discuss. [5] Hint: To evaluate the integrals in this problem you will need to use the following identities:

$$
\begin{gathered}
\int_{-\infty}^{\infty} f(x) d x=0 \text { for any even function } \mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x}) \\
\int_{-\infty}^{\infty} x^{2} e^{-\beta x^{2}} d x=\frac{1}{2 \beta} \sqrt{\frac{\pi}{\beta}} \\
\int_{-\infty}^{\infty} x^{4} e^{-\beta x^{2}} d x=\frac{3}{4 \beta^{2}} \sqrt{\frac{\pi}{\beta}}
\end{gathered}
$$

