Homework 4

PHYS 485: Fall 2017 Due Date: 10/18/2017

To recieve fully credit please write legibly and clearly, show all required steps and calculations and answer any explicit questions in full sentences.

I. REFRESHER: CALCULATING EIGENVALUES AND EIGENVECTORS OF MATRICES [8]

Consider a system of 2 coupled linear equations

$$3x + 4y = \alpha x \tag{1}$$
$$4x - 1y = \alpha y$$

- (a) Re-write this system as a matrix-based relationship in the x, y basis. In particular, find a 2 × 2 matrix M such that $M\vec{r} = \alpha\vec{r}$ for $\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix}$. [1]
- (b) Find the two eigenvalues α_1 and α_2 of the matrix M by solving the determinant equation [2]

$$\begin{vmatrix} 3-\alpha & 4\\ 4 & -1-\alpha \end{vmatrix} = 0.$$

- (c) For each of the two eigenvalues that you found, find the relationship between x and y that satisfies Eq. (1). Namely, find β_1 and β_2 such that $y = \beta_1 x$ and $y = \beta_2 x$ for α_1 and α_2 , respectively. [2]
- (d) Now, the following vector is an eigenvector of M:

$$\vec{v}_1 = \begin{pmatrix} x\\ \beta_1 x \end{pmatrix},\tag{2}$$

and similarly for \vec{v}_2 . In both cases, find x by requiring that \vec{v}_i be normalized: $\vec{v}_1 \cdot \vec{v}_1 = 1$ and $\vec{v}_2 \cdot \vec{v}_2 = 1$. [2]

(e) Show that the eigenvectors $\vec{v_1}$ and $\vec{v_2}$ are orthogonal i.e. that their dot product vanishes. This result, combined with enforcing $\vec{v_1} \cdot \vec{v_1} = 1$ ($\vec{v_2} \cdot \vec{v_2} = 1$) in the previous part of the problem, shows that $\vec{v_1}$ and $\vec{v_2}$ form an orthonormal basis. [1]

II. DOUBLE WELL POTENTIAL AND TUNNELING [12]

Consider an electron in the double potential well shown in Fig. 1.

- (a) Draw the ground state wavefunction, ψ_R (right) and ψ_L (left), for each of the potential wells in Fig. 1 (a). Assume that the state described by ψ_R has energy E_R and the state described by ψ_L has energy E_L . [2]
- (b) Now, suppose that the barrier between the two wells is large (much larger than E_L and E_R) but finite and of height V_0 as shown in Fig. 1 (b). Draw the wavefunctions for the ground state and the first excited state of this combined system. [2]
- (c) To find the energies of eigenstates you have drawn above, we can use the formalism of Problem I. More precisely, we can write the Hamiltonian of the combined system as a matrix in the (ψ_R, ψ_L) basis where ψ_L can be denoted by $\begin{pmatrix} 1\\0 \end{pmatrix}$ and ψ_R can be taken to be equal to $\begin{pmatrix} 0\\1 \end{pmatrix}$. In this basis, the Hamiltonian of the combined system reads:

$$H = \left(\begin{array}{cc} E_R & t \\ t & E_L \end{array}\right)$$

where t is the strength for tunneling through the large barrier. Following the procedure you used to find the eigenvalues and eigenvectors of M in Problem I, find the same quantities for H. [4]

FIG. 1: Double potential well discussed in Problem II.

- (d) For the eigenvector corresponding to the lower energy state (smaller eigenvalue), what is the probability of the electron being described by ψ_R ? What is the probability of the electron being described by ψ_L ? [2]
- (e) Suppose an electron is in the ground state of this system and gets excited to the first excited state by absorbing a photon. What is the wavelength of this photon in terms of E_R, E_L, t and fundamental constants? [2]

III. LENNARD-JONES POTENTIAL [8]

The Lennard-Jones potential is a simple model commonly used to approximate interactions (for instance van der Waals) between pairs of particles at the atomic scale. It is given by:

$$V_{\rm LJ}(r) = V\left(\left(\frac{r_0}{r}\right)^{12} - 2\left(\frac{r_0}{r}\right)^6\right).$$

Here, r is the distance between the atoms. For small displacement (δr) of atoms away from the equilibrium position, this system of particles acts as a spring in that $V_{\rm LJ}$ exerts a restoring force such that $V(r) \approx V_0 + \frac{1}{2}k(\delta r)^2$. Here you will find the spring constant k by Taylor expanding $V_{\rm LJ}$.

- (a) Sketch the Lennard-Jones potential [1]
- (b) (i) Determine the value of $r = r_{\min}$ such that V(r) is minimized. *Hint: Consider finding an* r such that $\frac{\partial V_{LJ}}{\partial r}|_{r=r_{\min}} = 0.$
 - (ii) Use r_{\min} to find V_0 in terms of r_0 and V. [2]
- (c) Calculate the value of the second derivative of $V_{LJ}(r)$ at the minimum value of the potential i.e. at r_{min} . [1]
- (d) Find the angular frequency of oscillation about r_{\min} by recalling that $\omega = \sqrt{k/m}$ and the spring constant k is related to the second derivative you have calculated above. Here, m is the effective mass of the two particles combined. [2]
- (e) Treating this oscillation quantum mechanically, what is the energy difference between the ground state and the first excited state? Give the value of this energy in electronvolts for $r_0 = 0.34$ nm and V = 9.949 meV. [2]

IV. QUANTUM HARMONIC OSCILLATOR [12]

Consider a quantum harmonic oscillator of mass m having a spring constant k.

- (a) (i) Explicitly write down the normalized ground state wavefunction, ψ_0 , and the wavefunctions, ψ_1, ψ_2 , of the first two excited states for this system.
 - (ii) What are the energies of these states?
 - (iii) Sketch the potential and these wavefunctions on the same plot and label them clearly. [3]
- (b) Now suppose the oscillator is prepared in a superposition state, $\Psi(x, t = 0)$, of the first excited state and the second excited state with equal amplitudes at t = 0. What is $\Psi(x, t)$ in terms of ψ_1 and ψ_2 and their energies i.e how does this state evolve in time? Make sure to normalize $\Psi(x, t)$ as appropriate. [2]
- (c) Calculate $\langle E \rangle$ for $\Psi(x,t)$. Does it depend on time? Explain. [2] *Hint: No complicated calculations are necessary in this part of the problem.*
- (d) Calculate and plot $\langle x(t) \rangle$ for . How does it compare to the classical harmonic operator? Discuss. [5] *Hint: To evaluate the integrals in this problem you will need to use the following identities:*

$$\int_{-\infty}^{\infty} f(x)dx = 0 \text{ for any even function } f(x) = f(-x),$$
$$\int_{-\infty}^{\infty} x^2 e^{-\beta x^2} dx = \frac{1}{2\beta} \sqrt{\frac{\pi}{\beta}},$$
$$\int_{-\infty}^{\infty} x^4 e^{-\beta x^2} dx = \frac{3}{4\beta^2} \sqrt{\frac{\pi}{\beta}}.$$