
Homework 8

PHYS 485: Fall 2017

Due Date: 12/8/2017

To recieve fully credit please write legibly and clearly, show all required steps and calculations and answer any explicit
questions in full sentences. Problems IV and V are not mandatory but you can get extra homework credit by
attempting either or both.

I. QUANTUM STATISTICS [18]

Two particles are distributed across four energy states: E1, E2, E3, and E4. In this problem you will learn how their
(in)distinguishable nature and quantum statistics greatly dictate their distributions.
Consider three possible cases:

(i) Distinguishable particles: can be denoted by two different labels such as A and B, for example.

(ii) Bosons: can be denoted by the same letter or label. Keep in mind that there is no restriction on how many
particles can occupy a single energy state. (For instance, two or three, or fifty, bosons can all occupy a single
energy state E.)

(iii) Fermions: can be denoted them by the same letter. Keep in mind that only one particle can occupy a single
energy state. (For instance, to distribute three fermions, three or more energy states are needed.)

For each of these cases

(a) Write out all possible configurations of particles. You can, for example, denote each energy state as a box and
the particle as a letter to put inside the box (or not). Refer to Fig. 7.9 in Townsend for an example of such
representation. [6]

(b) A microstate represents a particular configuration of the two particles occupying specific energy states. How many
microstates are there for each case? [6]

(c) For each case, what is the probability of finding two particles in the same energy state? (The probability is the
number of microstates that respect this configuration divided by the total number of microstates.) Based on these
probabilities, comment on the differences between distinguishable particles, bosons, and fermions. [6]

Instead of two particles and four energy states, if you were to scale up this analysis to many particles, many energy
states and total fixed energy, you would obtain the different kinds of distribution functions for the three cases (Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac) discussed in Eqs. (7.43-5) in Townsend. This system could act as a
thermal reservoir when in contact with a smaller system.

II. BOSE EINSTEIN CONDENSATION [8]

Unlike fermions which are a more “solitary” particle governed by the Pauli exclusion principle, bosons are likely to
“bunch up” and macroscopically occupy the same energy state at low temperatures. When a large number of bosons
does so i.e. when most of them are occupying the lowest available energy state, we do not speak of a gas of bosons
anymore but rather a new, fundamentally quantum, state of matter called the Bose Einstein condensate. Such a
state of matter can only be achieved at low temperatures – temperatures below some critical temperature Tc. In this
problem, you will estimate Tc without having to resort to complicated statistical calculations.

(a) First, we will use the fact that in three dimensions the “equipartition theorem” states that the average kinetic
energy of the bosons at some temperature T is given by

1

2
mv2 =

3

2
kT.

Use this to express the de Broglie wavelength λdB = h/p in terms of T , m and fundamental constants. [2]
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(b) At the critical temperature for Bose-Einstein condensation, the spacing between atoms is comprable to their de
Broglie wavelength – their quantum wave-like nature cannot be ignored! What is the spacing between atoms d
for a cloud of N bosons confined in a volume V ? [2]

(c) By equating the spacing between atoms d and their de Broglie wavelength λdB find Tc as a function of N , V , m
and fundamental constants. [1]

(d) Calculate Tc for a cloud of N = 2 × 107 atoms of 4He in a volume of 10 µm3. How many orders of magnitude
(powers of 10) is this temperature lower than room temperature Troom ≈ 300 K? [3]

In laboratory settings, such temperatures (and thousands of times lower) are achieved by means of manipulating
bosons with laser light and magnets – some of the labs on the third floor of Loomis are among the coldest places
in the world!

III. FERMIONS AND THEIR PROPERTIES [14]

(a) Consider the Fermi-Dirac distribution function given by

n(E) =
1

e(E−EF )/kBT + 1
.

What is its physical meaning? Plot the distribution function as a function of energy at

(i) zero temperature

(ii) EF � kBT

(iii) EF � kBT.

For (ii), show the width kBT on your plot on both sides of the Fermi energy, EF . This region should be where
(ii) deviates from (i). [6]

(b) Consider a free-electron model describing conduction electrons in a metal. The density-of-states (number of states
within a “sliver” of energy centered around E) is given by

D(E)dE =
V (2m)3/2

2~3π2

√
EdE.

At zero temperature, the total number of particles is given by N =
∫ EF

0
D(E)dE. Find a relationship between

the Fermi energy and density of electrons, N/V . [2]

(c) For silver, having density 10.49 g/cm3, find the Fermi energy. At what temperature does kBT become comparable
to this energy? This is the temperature at which the electronic properties of the metal would begin to disintegrate.
[3]

(d) Now find the net energy of the conduction electrons at zero temperature and express it in terms of the Fermi
energy and number of particles [3]

Enet =

∫ EF

0

ED(E)dE.

IV. EXTRA CREDIT : BOLTZMANN STATISTICS [8]

In this problem we consider a molecule modeled as a system having three equally spaced energy levels E1 = ε, E2 = 2ε
and E3 = 3ε (corresponding to, for instance, some rotational degrees of freedom) that is in contact with a large
thermal reservoir of temperature T . In such a situation, we can calculate the probability of the molecule being in any
of these energy levels Ei by using the Boltzmann factor e−Ei/kT as follows:

Pi =
die
−Ei/kT∑

j dje
−Ej/kT

where dj denotes the degeneracy of a state with energy Ej . Note that, in this problem, E1, E2 and E3 all have
degeneracy 1 i.e. d1 = d2 = d3 = 1.
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(a) What is the probability P1 that the molecule will be in its lowest energy state E1? What is the probability P3

that the molecule will be in its highest energy state E3? [4]

(b) How would your answers change if this molecule did have some degenerate energy states? More precisely, what
is the value of P1 if we consider a different molecule having available energy states E1 = ε, E′1 = ε, E2 = 2ε and
E3 = 3ε? Hint: Now d1 = 2 [2]

(c) What is P1 when T →∞? How do P2 and P3 compare to P1 for T →∞? [2]

V. EXTRA CREDIT : SEMICONDUCTORS [8]

A semiconductor is characterized by an energy gap Eg at the Fermi energy. At zero temperature, states just below
the gap (valence band) are filled and states above the gap are empty (conduction band). At finite temperature, due
to thermal excitations, the average number of electrons per state excited into the conduction band is given by

n(Eg) =
1

eEg/2kBT + 1
.

For Eg � kBT , we have n(Eg) ' e−Eg/2kBT .

(a) Assuming that Eg � kBT , calculate the average number of electrons per state at the bottom of the conduction
band for geranium, having Eg = 0.66 eV at room temperature i.e. Trm = 300 K. [2]

(b) Repeat the same calculation for T = 360 K. [2]

(c) What is the percentage change in absolute temperature between Trm and T? [2]

(d) What percent change in value of n(Eg) does this change in absolute temperature produce? Discuss. [2]
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