
Phys 487 Discussion 1 – Angular Momentum & Commutator Algebra

When we first studied angular momentum, we combined the relation  
!
L = !r × !p  and the QM operators
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to obtain the operator  
!̂
L  for orbital angular momentum.  In particular, we found these commutation relations :  

	 	 L̂2, L̂i⎡⎣ ⎤⎦ = 0  where i = x, y, or z	 	 and		
 
L̂x , L̂y⎡⎣ ⎤⎦ = i!L̂z  + cyclic permutations thereof.

In words,  L2 ≡
!
L ⋅
!
L  commutes with each component of  

!
L , but the components don’t commute with each other. 

That was for orbital angular momentum (OAM).  We then encountered experimental evidence for another type 
of angular momentum: spin angular momentum.  We called this  

!
S .  It is an intrinsic property of elementary 

particles, like mass or charge, and behaves a great deal like the rotational angular momentum of classical 
objects about their center-of-mass.  To work with spin, we literally copied all the relations we derived for OAM, 
notably those commutators: 

	 	 Ŝ2, Ŝi⎡⎣ ⎤⎦ = 0  where i = x, y, or z	 	 and		
 
Ŝx , Ŝy⎡⎣ ⎤⎦ = i!Ŝz  + cyclic permutations thereof.

Experiment indicates that spin really is an angular momentum like OAM in that the two add together.  
We introduced the letter  

!
J  to describe two things : 

	 	 • Total angular momentum, as in the sum of OAM and spin :  
!
J =
!
L +
!
S

	 	 • Any angular momentum: j or J can stand for an OAM, or a spin, or the sum of 2 spins and an OAM, …
	 	 	 Since our description of spin is copied from our description of OAM, we need some letter that 
	 	 	 can generically refer to either one! 

So finally, the commutators for quantum angular momentum – spin, OAM, or their sum – are : 

	 	 Ĵ 2, Ĵi⎡⎣ ⎤⎦ = 0  where i = x, y, or z	 	 and		
 
Ĵx , Ĵy⎡⎣ ⎤⎦ = i!Ĵz  + cyclic permutations thereof.

Here is a problem from a compendium of Ph.D. qualifying exam problems that shows just how powerful those 
angular momentum relations are : 

Problem 1 : Algebra of Angular Momentum	 Qual Problem (Stony Brook)

Given the commutator algebra

	 	 J1, J2⎡⎣ ⎤⎦ = iJ3 	 	 	 J2, J3⎡⎣ ⎤⎦ = iJ1 	 	 	 J3, J1⎡⎣ ⎤⎦ = iJ2

(a)  Show that J 2 ≡ J1
2 + J 2

2 + J 3
2  commutes with J3. 

(b)  Derive the spectrum of J 2, J3{ }  from the commutation relations.

▶ Part (a) is no problem, a little refresher on working with commutators.  
▶ Part (b), however, is BIG.  Since this is your first time seeing it, some hints are coming up on the next page.  
The biggest hint you need is LADDER OPERATORS, i.e. these guys: Ĵ± = Ĵx ± i Ĵy .  Remember them … ?



Important: Everything in this qual problem has to be explicitly derived from nothing but the three given 
commutation relations.  That is, of course, what makes this problem so awesome.   :-D  
Also, since this is your first time working this problem, you can consult the 486 formula sheet on our website as 
a memory-assist … but remember that you will not have much / any of a formula sheet on the qual exam 
(the UIUC qual sheet is on our website if you’re interested).  That, of course, makes the qual awesome.  :-D 

Now for some guidance as to how to proceed with part (b).                                        with some hints in footnote1

[STEP 1]  Introduce labels for the eigenvalues that you are trying to find.  

What are you trying to find again?  → the spectrum of the operators J2 and J3.  The spectrum of an operator 
means all the allowed = measurable values of the associated observable, which in QM means all the eigenvalues 
of the operator.  We can’t proceed before we have labels for all of our knowns and unknowns, so we need a 
symbol for the eigenvalues of J2 and another one for the eigenvalues of J3.  We could use something generic like 
a and b : 

	 	 J 2 a,b = a a,b      and      J3 a,b = b a,b .

This will work … but we will make our life much easier if we can guess what the answer is going to be.  
We derived the spectra for the orbital angular operators L2 and Lz … do you remember the form of their 
eigenvalues … ?  Take your best shot at ideal labels for the eigenvalues of J2 and J3, then check the footnote. 

[STEP 2]  Introduce and derive the ladder operators for Ĵ3
Here, you really need to remember the form of the ladder operators Ĵ±  that step-up and step-down the
eigenvalues of Ĵz .  Their form is Ĵ± = Ĵx ± i Ĵy .  Now it is up to you to prove that they are the ladder operators 
of Ĵz  (and translate xyz into 123).  What formula must you prove to show this?  (footnote has sequence of hints)

[STEP 3]  Normalize the ladder operators for Ĵ3
You just showed that Ĵ± j, m ~ j, m ±1 , which means Ĵ± j, m = cj ,m,± j, m ±1  for some normalization 

constant cj,m,±.  You derived this constant in Homework 12 last year; here’s the result so you can keep going 

	 	 Ĵ± j, m = j ( j +1)−m m ±1( ) j, m ±1

1 STEP 1 : introduce j and m as labels for the eigenstates of J2 and J3, i.e. let the eigenstates be j,m .  For the eigenvalues, use our 
prior knowledge to guess these forms: J 2 j,m = j ( j + 1) j,m  and J 3 j,m = m j,m .  Why does this help?  It might not help, but 
for OAM at least, we know that the eigenvalues of L2 and Lz are  l(l + 1)!

2  and  m!with m and l = integers.  We will see if this 
problem also ends up with eigenvalues of the form j(j+1) and m for integer-only values of j and m … 

STEP 2 : You must show that Ĵ± j ,m ~ j , m ± Δm  for some Δm.  In words, when you hit an eigenstate of J3 with J± , you get 
another eigenstate of  J3, just with a larger or smaller eigenvalue m.  And to show that, you must show ….

STEP 2′ : Ĵ3 Ĵ± j,m( ) = m ± Δm( ) Ĵ± j,m( )  for some Δm … now we notice the product Ĵ3 Ĵ±  in there; what would be useful?

STEP 2′′ : A product of two operators is involved?  Hoho!  I bet the commutator Ĵ3, Ĵ±[ ]  of those operators would help!  
→  now we are good to go for STEP 2 : calculate the commutator Ĵ3, Ĵ±[ ] , then prove STEP 2′, which proves STEP 2.

STEP 2′′′ : In principle, you must also show that Ĵ 2 Ĵ± j,m( ) = j j + 1( ) Ĵ± j,m( ) , i.e. that your proposed ladder operators 
do not change the eigenvalue j(j+1) of J2, they only change the eigenvalue m of J3.  The method is the same.



[STEP 4]  Restrict the allowed values of m                                                                    further hints in footnote2

Time to start constraining the eigenvalues m and j(j+1) to find the allowed spectrum.  First, we can easily 
constrain m relative to j because we know the physics behind the operators: 
	 ● J3 is one component of 

!
J , while  

	 ● J² is the magnitude² of  
!
J , with J 2 ≡ J1

2 + J 2
2 + J 3

2  from part (a).
Clearly the (eigenvalue)² of J3 can never be bigger that the eigenvalue of J²!  For a given value of j, what values 
of m are allowed?  

[STEP 5]  Restrict the allowed values of j  

This is the last part!  Do you recall how you used the ladder operators â±  for the harmonic oscillator 
Hamiltonian to produce its energy spectrum?  The basic idea is “if you know one eigen-energy, apply the step-
up operator and you’ll get another one that’s higher! … or apply the step-down operator and you’ll get another 
energy that’s lower! …” all of which produces a lovely ladder of energy eigenvalues.  But can we continue 
forever up the ladder, or forever down the ladder, with repeated applications of â+  or â–  … ?  
That may be enough of a hint for you to finish the problem and find all the allowed values of j.  
Otherwise, a sequence of hints is in the footnote. 

2 STEP 4 : m2 ≤ j ( j + 1) , directly from J 2 ≡ J1
2 + J 2

2 + J 3
2  and the positivity of J1

2 + J 2
2 .

STEP 5 : The ladder operators in this problem are J± … what eigenvalue do they increase / decrease?  

STEP 5′ : They affect m, increasing / decreasing it by 1 … now: can you keep increasing and/or decreasing m forever? 

STEP 5′′ : No:  the ladder operators do not affect j, so we cannot keep increasing m forever with repeated applications of J+ or we 
will violate the limit m2 ≤ j ( j + 1)  from STEP 4.  Same issue with repeated applications of J–.  Now, can you write down a 
mathematical expression that says “too many applications of J+ or J– to a given state j,m  are not allowed” ? 

STEP 5′′′ : Ĵ+ j, mmax = 0   and  Ĵ– j, mmin = 0   … so what are the min and max values of m for a given j?  STEP 4 provides
an upper limit, but not a value … instead you must use an earlier formula …  

STEP 5′′′′ :  Evaluate Ĵ+ j, mmax = 0   and  Ĵ– j, mmin = 0   using the normalized formula from STEP 3 
→ the result is mmax = j , mmin = – j .   Great!  The next step is very cool: we must remember the ladder and realize that we can get 
from state j,mmin  to state j,mmax  by repeated application of Ĵ+ .  That tells us something about the quantity (mmax− mmin )  ...

STEP 5′′′′′ : The ladder takes us from mmin  to mmax  via this operation : Ĵ+( ) p j, mmin ~ j, mmax  where p is an integer : it is a  
count of the number of step-up operations needed.  Since each application of J+ changes m by +1, mmax− mmin = p = an integer.
Now you have everything you need to determine the spectrum of possible values of j …

FINAL RESULT : j = p/2 and is therefore restricted to integer or half-integer values (0, ½, 1, 3/2, 2, 5/2, …)


