
Phys 487 Discussion 2 – Symmetrization and the Exchange Force
It is considered a postulate of quantum mechanics that the wavefunction for n identical particles must be 
either symmetric (S,+) or antisymmetric (A,–) under the exchange of any two particles:  

	 	  ψ (
!r2,
!r1) = ±ψ (!r1,

!r2 )  if particle 1 and particle 2 are indistinguishable.

Problem 1 : Fermi, Bose, and Pauli

There is one more part to the postulate, which we mentioned at the end of last semester. 

	 	 • 2-Fermion wavefunctions are Antisymmetric under exchange →  ψ (
!r2,
!r1) = –ψ (

!r1,
!r2 ) .

	 	 • 2-Boson     wavefunctions are Symmetric        under exchange →  ψ (
!r2,
!r1) = +ψ (!r1,

!r2 ) .
where
	 	 • a Fermion is a particle with half-integer spin (e.g. electrons, protons, neutrons)
	 	 • a Boson     is a particle with integer spin         (e.g. photons, many nuclei)

(a)  What if we have a system composed of one of each, e.g. a spin-1 deuterium nucleus (boson) and a spin-½ 
electron (fermion)?  What is the symmetry of that under exchange?  (Hint: No calculations required, and you 
will laugh when you realize the answer.)

(b)  Show that it is impossible for two fermions to occupy exactly the same state: show that you cannot build a 
wavefunction  ψ (

!r1,
!r2 )  with the necessary symmetry properties when particle 1 and particle 2 have the exact 

same individual wavefunctions. 

FYI: This result is the Pauli Exclusion Principle.  It is an immediate consequence of the anti-symmetrization 
requirement on the wavefunctions of indistinguishable fermions, and is essential for understanding the periodic 
table – i.e. the chemical behavior of the various elements — as it means each available quantum state 
nl ml sms  is occupied by one and only one electron.  The available states fill up one by one, which would not 

be the case if the electron were a boson. 

Problem 2 : The Exchange Force

The purely quantum mechanical symmetrization principle for identical particles produces a purely quantum 
mechanical effect that has no analogue in classical mechanics (and therefore takes some getting used to) : the 
effective “exchange force”.

Two particles move in 1D only (just for simplicity) and are described by the position coordinates x1 and x2 
respectively.  Let’s calculate the <distance²> between the two particles,

	 	 <distance²>  ≡  (x1 − x2 )
2 = x1

2 + x2
2 − 2 x1 x2

in different scenarios.

(a)  If the particles are Distinguishable (not identical), we can given them a nice factorized wavefunction 

	 	 ψ D (x1, x2 ) =ψ a (x1)ψ b (x2 )    where state a and state b are normalized and orthogonal to each other.1 

This ψD has no particular exchange-symmetry properties.  Calculate the expected separation², (x1 − x2 )
2 , 

in terms of the single-particle/single-wavefunction expectation values x a , x b , x2
a
,  and/or x2

b
.

1  Why make ψa and ψb orthogonal to each other?  For convenience / simplicity, that’s all.  There is nothing profound about this 
requirement.  We will remove it in part (d).  



(b)  Now suppose the particles are inditinguishable (identical).  We must Symmetrize or Antisymmetrize the 
2-particle wavefunction: 

	 	 ψ S ,A(x1, x2 ) =
1
2

ψ a (x1)ψ b (x2 ) ± ψ b (x1)ψ a (x2 )[ ]

Calculate the expected separation², (x1 − x2 )
2 , for this wavefunction.  Your answer will again involve the 

single-particle/single-wavefunction expectation values x a , x b , x2
a
,  and/or x2

b
 and one other term.  

(c)  Which of the cases D, A, or S produces the largest separation between the two particles and which produces 
the smallest? 

THINK ABOUT THAT for a second!  →  Anti-symmetrizing a wavefunction actually “pushes” the particles 
apart, while symmetrization “pulls” them closer together.  This effect actually behaves like an effective force / 
pseudo-force, and is sometimes called the exchange force.  You do need to add it to your intuition to understand 
chemistry, most especially the bonding of molecules.  Think of it like this: relatively speaking, 

	 	 • identical fermions are “repelled” from each other more than you would think, and

	 	 • identical bosons are “attracted” to each other more than you would think.

“More than you would think” means “more than if you mentally take into account only actual forces”, like 
electromagnetism or the strong force.  Hence, a pseudo-force.  “ANTI-SYMMETRIC means APART” helps 
me to internalize this effect because an antisymmetric wavefunction can never have the two particles at the 
same place.  (You thought through this in Problem 1b = the Pauli Exclusion Principle!)  That simple fact shows 
that anti-symmetrization produces some sort of repulsive pseudo-force for fermions. 

(d)  We started this problem with the wavefunction ψ D (x1, x2 ) =ψ a (x1)ψ b (x2 )  “where ψa and ψb are normalized 
and orthogonal to each other.”  Normalizing the individual, single-particle wavefunctions is a natural thing to 
require (so that there are no unknown normalization constants to worry about) … but why make the a and b 
states orthogonal to each other?  Answer: it makes the normalization of the (anti)-symmetrized 2-particle 
wavefunction ψS,A(x1, x2) easier, that’s all!  If states a and b are not necessarily orthogonal to each other, then 
the (anti)-symmetrized 2-particle wavefunction must be written

	 	   ψ S ,A(x1, x2 ) = C ψ a (x1)ψ b (x2 ) ± ψ b (x1)ψ a (x2 )[ ]

where the normalization constant C has to be determined as it is not necessarily 1/ 2 .  Calculate what constant
C is necessary to make the norm ψ S ,A ψ S ,A  of the above wavefunction equal to 1 in the following cases:

	 	 (i) if state a and state b are orthogonal to each other, as before

	 	 (ii) if state a and state b are the same.

Continue to assume that ψa(x) and ψb(x) are individually normalized, because why would you not. ☺︎ 



Problem 3 : Identical Particles in an Infinite Well

The infinite 1D well ( V(x) = 0 for 0 < x < a   and  V(x) = ∞ elsewhere ) is the perfect sandbox for testing new 
bits of physics because it is an easy system to play with.  If you drop in one particle, its energy eigenstates are

	 	 ψ n (x) = 2 / a sin nπ x / a( )     with corresponding eigenvalues   En = n
2K   (where  K ≡ π 2!2 / 2ma2 ).  

To make our sandbox as delightful as possible, let’s use distance units where a = π.   Whee! ☺︎ 

(a)  If you drop in two Distinguishable particles that don’t interact with each other, the energy eigenstates are 
simply ψ n1n2

(x1, x2 ) =ψ n1
(x1)ψ n2

(x2 ) .  Use the convenient symbol K defined above to answer these questions:

	 (i) What is the energy En1n2
of such a 2-particle eigenstate in terms of n1 and n2?  

	 (ii) Find the energy and the degeneracy of the ground state(s).

	 (iii) Find the energy and the degeneracy of the first excited state(s). 

(b)  Clear out the well, then drop in two identical bosons.  (Again, they don’t interact with each other, only with 
the well’s walls.)  This time, all 2-particle wavefunctions have to be Symmetric under 1 <—> 2 exchange!

	 (i) What is the wavefunction of the ground state (≡ lowest-energy eigenstate)? 

	 (ii) Find the energy and the degeneracy of the ground state(s).

	 (iii) Find the energy and the degeneracy of the first excited state(s). 

(c)  Clear out the well, then drop in two identical fermions (that don‘t interact with each other).  This time, the 
2-particle wavefunctions must be Anti-symmetric under 1 <—> 2 exchange.

  	 (i) What is the wavefunction of the ground state (≡ lowest-energy eigenstate)? 

	 (ii) Find the energy and the degeneracy of the ground state(s).

	 (iii) Find the energy and the degeneracy of the first excited state(s). 


