## Phys 487 Discussion 2 – Symmetrization and the Exchange Force

It is considered a **postulate** of quantum mechanics that the wavefunction for *n* **identical particles** must be either **symmetric** (S,+) or **antisymmetric** (A,-) under the **exchange** of any two particles:

 $\psi(\vec{r}_2,\vec{r}_1) = \pm \psi(\vec{r}_1,\vec{r}_2)$  if particle 1 and particle 2 are indistinguishable.

## Problem 1 : Fermi, Bose, and Pauli

There is one more part to the postulate, which we mentioned at the end of last semester.

- 2-Fermion wavefunctions are Antisymmetric under exchange  $\rightarrow \psi(\vec{r}_2, \vec{r}_1) = -\psi(\vec{r}_1, \vec{r}_2)$ .
- 2-Boson wavefunctions are Symmetric under exchange  $\rightarrow \psi(\vec{r}_2, \vec{r}_1) = +\psi(\vec{r}_1, \vec{r}_2)$ .
- where
- a Fermion is a particle with half-integer spin (e.g. electrons, protons, neutrons)
- a **Boson** is a particle with **integer spin** (e.g. photons, many nuclei)

(a) What if we have a system composed of one of each, e.g. a spin-1 deuterium nucleus (boson) and a spin- $\frac{1}{2}$  electron (fermion)? What is the symmetry of *that* under exchange? (Hint: No calculations required, and you will *laugh* when you realize the answer.)

(b) Show that it is <u>impossible</u> for two fermions to occupy exactly the same state: show that you cannot build a wavefunction  $\psi(\vec{r_1}, \vec{r_2})$  with the necessary symmetry properties when particle 1 and particle 2 have the exact same *individual* wavefunctions.

FYI: This result is the **Pauli Exclusion Principle**. It is an immediate consequence of the anti-symmetrization requirement on the wavefunctions of indistinguishable fermions, and is essential for understanding the periodic table – i.e. the chemical behavior of the various elements — as it means each available quantum state  $|nlm_l sm_s\rangle$  is occupied by one and only one electron. The available states fill up one by one, which would *not* be the case if the electron were a boson.

## **Problem 2 : The Exchange Force**

The purely quantum mechanical symmetrization principle for identical particles produces a purely quantum mechanical effect that has no analogue in classical mechanics (and therefore takes some getting used to) : the effective "**exchange force**".

Two particles move in 1D only (just for simplicity) and are described by the position coordinates  $x_1$  and  $x_2$  respectively. Let's calculate the <distance<sup>2</sup>> between the two particles,

$$\langle \text{distance}^2 \rangle \equiv \langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$$

in different scenarios.

(a) If the particles are **D**istinguishable (not identical), we can given them a nice factorized wavefunction

 $\psi_D(x_1, x_2) = \psi_a(x_1) \psi_b(x_2)$  where state *a* and state *b* are normalized and orthogonal to each other.<sup>1</sup>

This  $\psi_D$  has no particular exchange-symmetry properties. Calculate the expected separation<sup>2</sup>,  $\langle (x_1 - x_2)^2 \rangle$ , in terms of the single-particle/single-wavefunction expectation values  $\langle x \rangle_a , \langle x \rangle_b , \langle x^2 \rangle_a$ , and/or  $\langle x^2 \rangle_b$ .

<sup>&</sup>lt;sup>1</sup> Why make  $\psi_a$  and  $\psi_b$  orthogonal to each other? For convenience / simplicity, that's all. There is nothing profound about this requirement. We will remove it in part (d).

(b) Now suppose the particles are inditinguishable (identical). We must Symmetrize or Antisymmetrize the 2-particle wavefunction:

$$\psi_{S,A}(x_1, x_2) = \frac{1}{\sqrt{2}} \left[ \psi_a(x_1) \psi_b(x_2) \pm \psi_b(x_1) \psi_a(x_2) \right]$$

Calculate the expected separation<sup>2</sup>,  $\langle (x_1 - x_2)^2 \rangle$ , for this wavefunction. Your answer will again involve the single-particle/single-wavefunction expectation values  $\langle x \rangle_a$ ,  $\langle x \rangle_b$ ,  $\langle x^2 \rangle_a$ , and/or  $\langle x^2 \rangle_b$  and one other term.

(c) Which of the cases **D**, **A**, or **S** produces the largest separation between the two particles and which produces the smallest?

THINK ABOUT THAT for a second!  $\rightarrow$  Anti-symmetrizing a wavefunction actually "*pushes*" the particles *apart*, while symmetrization "*pulls*" them closer together. This effect actually behaves like an effective force / pseudo-force, and is sometimes called the **exchange force**. You do need to add it to your intuition to understand chemistry, most especially the bonding of molecules. Think of it like this: relatively speaking,

- identical fermions are "repelled" from each other more than you would think, and
- identical bosons are "attracted" to each other more than you would think.

"More than you would think" means "more than if you mentally take into account only *actual* forces", like electromagnetism or the strong force. Hence, a pseudo-force. "ANTI-SYMMETRIC means APART" helps me to internalize this effect because an antisymmetric wavefunction can *never* have the two particles *at the same place*. (You thought through this in Problem 1b = the Pauli Exclusion Principle!) That simple fact shows that anti-symmetrization produces some sort of repulsive pseudo-force for fermions.

(d) We started this problem with the wavefunction  $\psi_D(x_1, x_2) = \psi_a(x_1) \psi_b(x_2)$  "where  $\psi_a$  and  $\psi_b$  are normalized

and orthogonal to each other." *Normalizing* the individual, single-particle wavefunctions is a natural thing to require (so that there are no unknown normalization constants to worry about) ... but why make the *a* and *b* states *orthogonal* to each other? Answer: it makes the <u>normalization</u> of the (anti)-symmetrized <u>2-particle</u> wavefunction  $\psi_{S,A}(x_1, x_2)$  easier, that's all! If states *a* and *b* are *not necessarily* orthogonal to each other, then the (anti)-symmetrized 2-particle wavefunction must be written

$$\psi_{S,A}(x_1, x_2) = C \left[ \psi_a(x_1) \psi_b(x_2) \pm \psi_b(x_1) \psi_a(x_2) \right]$$

where the normalization constant *C* has to be determined as it is not necessarily  $1/\sqrt{2}$ . Calculate what constant *C* is necessary to make the norm  $\langle \psi_{s,a} | \psi_{s,a} \rangle$  of the above wavefunction equal to 1 in the following cases:

(i) if state a and state b are orthogonal to each other, as before

(ii) if state *a* and state *b* are the same.

Continue to assume that  $\psi_a(x)$  and  $\psi_b(x)$  are *individually* normalized, because why would you not.  $\odot$ 

## **Problem 3 : Identical Particles in an Infinite Well**

The infinite 1D well (V(x) = 0 for 0 < x < a and  $V(x) = \infty$  elsewhere) is the perfect sandbox for testing new bits of physics because it is an easy system to play with. If you drop in one particle, its energy eigenstates are

$$\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a)$$
 with corresponding eigenvalues  $E_n = n^2 K$  (where  $K \equiv \pi^2 \hbar^2 / 2ma^2$ ).

To make our sandbox as delightful as possible, let's use distance units where  $\underline{a} = \pi$ . Whee!  $\odot$ 

(a) If you drop in two **D**istinguishable particles that don't interact with each other, the energy eigenstates are simply  $\psi_{n,n_2}(x_1,x_2) = \psi_{n_1}(x_1)\psi_{n_2}(x_2)$ . Use the convenient symbol *K* defined above to answer these questions:

- (i) What is the energy  $E_{n,n}$  of such a 2-particle eigenstate in terms of  $n_1$  and  $n_2$ ?
- (ii) Find the energy and the degeneracy of the ground state(s).
- (iii) Find the energy and the degeneracy of the first excited state(s).

(b) Clear out the well, then drop in two identical **bosons**. (Again, they don't interact with each other, only with the well's walls.) This time, all 2-particle wavefunctions have to be Symmetric under 1 < -> 2 exchange!

- (i) What is the wavefunction of the ground state ( $\equiv$  lowest-energy eigenstate)?
- (ii) Find the energy and the degeneracy of the ground state(s).
- (iii) Find the energy and the degeneracy of the first excited state(s).

(c) Clear out the well, then drop in two identical **fermions** (that don't interact with each other). This time, the 2-particle wavefunctions must be Anti-symmetric under 1 < -> 2 exchange.

(i) What is the wavefunction of the ground state ( $\equiv$  lowest-energy eigenstate)?

(ii) Find the energy and the degeneracy of the ground state(s).

(iii) Find the energy and the degeneracy of the first excited state(s).