Phys 487 Discussion 3 – Hamiltonians as Matrices and Good Quantum Numbers

Problem 1: Symmetries and Good Quantum Numbers.

The Hamiltonian for a certain three-level system is represented by the matrix

$$H = \hbar\omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

where ω is a positive real number. Two other observables, *A* and *B*, in the same basis are represented as the matrices

$$A = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad B = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

where λ and μ are positive real numbers.

- (a) Compute the commutators [H, A] and [H, B]. If the commutator with the Hamiltonian is zero, then the observable is called a symmetry of the system (or an integral of motion). Are either A or B symmetries?
- (b) Suppose the system starts out at time t = 0 in a generic normalized state $|\psi(0)\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ where

 $|c_1|^2 + |c_2|^2 + |c_3|^2 = 1$. Compute the expectation values of A and B at t = 0.

- (c) Find the time-evolved state $|\psi(t)\rangle$. Compute the expectation values of *A* and *B* at time t > 0. A key property of symmetries is that their expectation values stay constant over time. You should see that this is true for one of the operators and not the other.
- (d) The observable *B* has an eigenvector $|\mu\rangle = \begin{pmatrix} 0\\ 1/\sqrt{2}\\ 1/\sqrt{2} \end{pmatrix}$ with eigenvalue μ . Show that if $|\psi(0)\rangle =$

 $|\mu\rangle$ at time t = 0, then the time-evolved state $|\psi(t)\rangle \propto |\mu\rangle$ for all times t > 0. Since *B* is a symmetry, its eigenvalues are *good quantum numbers*. If a state is an eigenstate of a symmetry, it will stay an eigenstate of that symmetry over time and will always have the same quantum number.

Problem 2: Electron in an External Field (Griffiths 4.33).

An electron is at rest in an oscillating external magnetic field that points in the z-direction

$$\boldsymbol{B} = B_0 \cos(\omega t) \hat{z}$$

where B_0 and ω are constants. The magnetic field couples to the spin of the electron so that the Hamiltonian for this system is

$$H = -\gamma \boldsymbol{B} \cdot \boldsymbol{S}$$

where γ is the gyromagnetic ratio and **S** is a vector of spin angular momentum operators.

- (a) Write down the Hamiltonian in terms of the S_z operator.
- (b) Remember that the electron is a spin-1/2 particle. The electron's spin can be in the state $|s, m_s\rangle = \left|\frac{1}{2}, \frac{1}{2}\right\rangle = |\uparrow\rangle$ or $|s, m_s\rangle = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle = |\downarrow\rangle$ or any linear combination of these two states.

Write down the Hamiltonian as a 2×2 matrix in the basis of states $\{|\uparrow\rangle, |\downarrow\rangle\}$.

(c) Suppose that the electron is initially pointing in the +x-direction. That means that it starts in the $+\hbar/2$ eigenstate of S_x , which is $|\psi(0)\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$. Determine the time-evolved state $|\psi(t)\rangle$ under the given Hamiltonian. *Hint: Since the Hamiltonian is time-dependent*, you need to directly solve the time-dependent Schrodinger equation. In this case, it ends up being simple to do so.

Problem 3: Spin-Orbit Coupling and Good Quantum Numbers.

Taking into account the effect of spin-orbit coupling, the Hamiltonian of an electron in the hydrogen atom is

$$H = H_0 + \beta \boldsymbol{L} \cdot \boldsymbol{S}$$

where β is a positive real number, H_0 is the unperturbed Hamiltonian that involves kinetic and potential energy, and the second term is the perturbation due to the spin-orbit interaction.

Notice that there are two sets of angular momentum operators, $\{L_1, L_2, L_3\}$ and $\{S_1, S_2, S_3\}$, which both obey the canonical angular momentum commutation relations

 $[L_1, L_2] = iL_3$ (and cyclic permutations) $[S_1, S_2] = iS_3$ (and cyclic permutations)

and also commute with one another so that $[L_i, S_j] = 0$ for all $i, j \in \{1, 2, 3\}$.

The observables L^2 , S^2 , L_3 , and S_3 all commute with H_0 , which means that their eigenvalues, l(l + 1), s(s + 1), m_l , and m_s , are all *good quantum numbers* in the unperturbed system. However, this is not true after the perturbation is added.

- (a) Show that $[H, L_3]$ and $[H, S_3]$ are not zero. The eigenvalues of L_3 and S_3 , m_l and m_s , are no longer good quantum numbers.
- (b) Show that $[H, L^2] = [H, S^2] = 0$. The eigenvalues of L^2 and S^2 , l(l + 1) and s(s + 1), remain as good quantum numbers.

Not part of the problem, but important info: With a little more work, you can also show that the observables $J^2 = (\mathbf{L} + \mathbf{S})^2$ and $J_3 = L_3 + S_3$, which correspond to the total orbital plus spin angular momentum, also commute with *H*. Their eigenvalues, j(j + 1) and m_j , are good quantum numbers in the presence of the spin-orbit interaction.