
Phys 487 Discussion 4 – Atomic Structure
Summary of the key elements that you must consider in understanding atomic structure are:

	 ● The good quantum numbers of an N-electron atom are 

	 	 • the individual li of the individual electrons i = 1, … N
	 	 	 (thus, “the Carbon ground state is 1s² 2s² 2p²” is a meaningful thing to say)
	 	 • the total L, S, and J quantum numbers 
	 	 	 (where total means “of all the electrons”)

	    	 We have not proved this yet; coming up.  It is called the LS-coupling scheme and works well when 
	 	 Vee >> Vs-o (which is true for all but the heaviest atoms).  The term symbol for an atomic state is thus
	 	 	 2S+1LJ  .

	 	 This is exactly the same as for a 1-electron atom, except you replace the single-electron quantum 
	 	 numbers s, l, and j with the total angular momentum quantum numbers S, L, and J. 

	 ● The wavefunction of the atomic electrons must be antisymmetric under the exchange of any two 
	     of them, which can be accomplished by either of these arrangements : 

	 	 	
 

ψ (1,2,3,...) =
ψ S (
!r1,
!r2,...) ⋅ χA(1,2,...)

ψ A(
!r1,
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⎧
⎨
⎪

⎩⎪
	    In words: either the space part is symmetric and the spin part is antisymmetric, or vice versa. 
	    NOTE: Are we certain that the N-electron wavefunction always factorizes into a space-only part 
	    × a spin-only part?  Yes, thanks to the LS-coupling scheme, which tells us that total-spin S and 
	    total-OAM L are separately conserved; the space part of the wavefunction determines L, and 
	    the separate spin part determines S.  

	 ● The main terms in the Hamiltonian that decide the ordering of energy levels are, in order of size,

	 	 1. The Bohr-model Hamiltonian T+VCoulomb, whose eigenvalues are determined by the quantum # n

	 	 2. The repulsive Vee term we discussed today, whose average size is controlled mainly by S and L

	 	 3. The spin-orbit Vs-o term, whose size is controlled by J

	    At the end, we went through the Hund rules, which specify how to use points 2 and 3 to determine
	    the lowest-lying energy state of an atom: 
	 	 rule #1 First maximize S to minimize Vee via the exchange force 
	 	 rule #2 Then maximize L, also to minimize Vee (less dramatically)
	       rule #3 Then choose J to minimize the Vs-o : for shells less than half full, minimize J 
	 	 	 	 	 	 	 	 	 	 	 	 	      for shells more than half full, maximize J

Problem 1 : 1 x 1

We were about to study the Carbon atom in class but didn’t quite make it.  Its ground-state configuration is

	 	 1s² 2s² 2p² 

(a)  The 1s² 2s² part comprises two closed shells, with total S = 0 and total L = 0.  To be certain that this is 
the case, check the NIST energy level database for the 4-electron atom Beryllium.  Does the term symbol you 
find there for the ground state match S = 0 and L = 0?  

(b)  Thus, from the perspective of angular momentum, we ignore the closed-shell part and focus on the two 



p-shell electrons of Carbon.  Each of them has l = 1.  How many ml states are associated with each electron, and 
as a result, how many OAM states | ml1, ml2 > are there for the 2p² electrons?  

(c) | ml1, ml2 > is one possible basis; | L, M > is another.  Enumerate all possible | L, M > states for the 2p² 
electrons of carbon, and check that you have the same number of states as in part (b)! 
(d)  Each L value produces a multiplet of states | L, M >.  As it happens, whenever you add two equal angular 
momenta together (such as l1 = 1 and l2 = 1 in our example), the L multiplets have these features : 
	 ● every member of an L multiplet has definite symmetry under exchange (either symm or anti-symm)
	 ● even values of L produce symmetric states and odd values of L produce anti-symmetric states
You can readily prove this by constructing the Clebsch-Gordan coefficients as we did last year.  We also 
discussed this in class.  Let’s make sure it is intuitively clear (and that you remember how to use Clebsch-
Gordan tables ☺︎) : using the Clebsch-Gordan tables on the website,
	 (i) Write down the states 2 +2 LM , 2 +1 LM , 1 +1 LM , 1 0 LM , and 0 0 LM  in the basis m1m2 .

	 (ii) Examine the states in the m1m2  basis, where the state of the individual electrons (#1 and #2) 
	 	 can be seen, and indicate whether each is symmetric or anti-symmetric under exchange. 

See how it works?  The highest-L multiplet is always symmetric, the one underneath is antisymmetric 
by orthogonality with the previous one, etc. 

Problem 2 : Carbon 2p²

Now we can construct all possible states 2S+1LJ  of the two p-shell electrons in carbon, and figure out their 
energy ordering using the Hund rules.  

(a)  First list all possible 2S+1L  states, i.e. ignore J.  You should get three.  If you get six, you need to apply an 
important constraint … that is on page 1 … second bullet … you just did some relevant work in problem 1 ...

(b)  Now apply Hund rule #1 to figure out which of those three is the ground state.  You do not have to 
memorized Hund #1 because it is really clear when you remember the exchange force and how it can 
powerfully affect that repulsive Vee term!

(c)  Next apply Hund rule #2 to figure out the smaller splitting between the other two states: which has lower E? 

(d)  Finally consider all possible J values for all the states.  There is a 3-fold degeneracy in one of the states … 
but it is broken by the spin-orbit interaction.  Recalling that  Vs-o ~ +

!
l ⋅ !s , you won’t even have to flip back to 

read Hund #3, it is very clear which J value will have the lowest energy and which the highest.  

(e)  Check your energy-level diagram with NIST!  Do you have all five 2S+1LJ  states in the right order? 


