Phys 487 Discussion 4 - Atomic Structure

Summary of the key elements that you must consider in understanding atomic structure are:

- The good quantum numbers of an N -electron atom are
- the individual $\boldsymbol{l}_{\boldsymbol{i}}$ of the individual electrons $i=1, \ldots \mathrm{~N}$
(thus, "the Carbon ground state is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$ " is a meaningful thing to say)
- the total $\boldsymbol{L}, \boldsymbol{S}$, and \boldsymbol{J} quantum numbers
(where total means "of all the electrons")
We have not proved this yet; coming up. It is called the LS-coupling scheme and works well when $V_{\text {ee }} \gg \mathrm{V}_{\mathrm{s}-\mathrm{o}}$ (which is true for all but the heaviest atoms). The term symbol for an atomic state is thus ${ }^{2 S+1} L_{J}$.
This is exactly the same as for a 1 -electron atom, except you replace the single-electron quantum numbers s, l, and j with the total angular momentum quantum numbers S, L, and J.
- The wavefunction of the atomic electrons must be antisymmetric under the exchange of any two of them, which can be accomplished by either of these arrangements :

$$
\psi(1,2,3, \ldots)=\left\{\begin{array}{l}
\psi_{S}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right) \cdot \chi_{A}(1,2, \ldots) \\
\psi_{A}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right) \cdot \chi_{S}(1,2, \ldots)
\end{array}\right.
$$

In words: either the space part is symmetric and the spin part is antisymmetric, or vice versa. NOTE: Are we certain that the N -electron wavefunction always factorizes into a space-only part \times a spin-only part? Yes, thanks to the LS-coupling scheme, which tells us that total-spin S and total-OAM L are separately conserved; the space part of the wavefunction determines L, and the separate spin part determines S.

- The main terms in the Hamiltonian that decide the ordering of energy levels are, in order of size,

1. The Bohr-model Hamiltonian $T+V_{\text {Coulomb, }}$, whose eigenvalues are determined by the quantum \# n
2. The repulsive $\boldsymbol{V}_{\text {ee }}$ term we discussed today, whose average size is controlled mainly by S and L
3. The spin-orbit $\boldsymbol{V}_{\text {s-o }}$ term, whose size is controlled by J

At the end, we went through the Hund rules, which specify how to use points 2 and 3 to determine the lowest-lying energy state of an atom:
rule \#1 First maximize S to minimize $V_{\text {ee }}$ via the exchange force
rule \#2 Then maximize L, also to minimize $V_{\text {ee }}$ (less dramatically)
rule \#3 Then choose J to minimize the $\mathrm{V}_{\mathrm{s}-\mathrm{o}}$: for shells less than half full, minimize J
for shells more than half full, maximize J

Problem 1: 1×1

We were about to study the Carbon atom in class but didn't quite make it. Its ground-state configuration is

$$
1 s^{2} 2 s^{2} 2 p^{2}
$$

(a) The $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ part comprises two closed shells, with total $S=0$ and total $L=0$. To be certain that this is the case, check the NIST energy level database for the 4 -electron atom Beryllium. Does the term symbol you find there for the ground state match $S=0$ and $L=0$?
(b) Thus, from the perspective of angular momentum, we ignore the closed-shell part and focus on the two
p-shell electrons of Carbon. Each of them has $l=1$. How many $m l$ states are associated with each electron, and as a result, how many OAM states $\mathrm{I} m_{l 1}, m_{12}>$ are there for the $2 \mathrm{p}^{2}$ electrons?
(c) $\mid m_{l 1}, m_{12}>$ is one possible basis; $\mid L, M>$ is another. Enumerate all possible $\mid L, M>$ states for the $2 \mathrm{p}^{2}$ electrons of carbon, and check that you have the same number of states as in part (b)!
(d) Each L value produces a multiplet of states $|L, M\rangle$. As it happens, whenever you add two equal angular momenta together (such as $l_{1}=1$ and $l_{2}=1$ in our example), the L multiplets have these features :

- every member of an L multiplet has definite symmetry under exchange (either symm or anti-symm)
- even values of L produce symmetric states and odd values of L produce anti-symmetric states You can readily prove this by constructing the Clebsch-Gordan coefficients as we did last year. We also discussed this in class. Let's make sure it is intuitively clear (and that you remember how to use ClebschGordan tables $\odot)$: using the Clebsch-Gordan tables on the website,
(i) Write down the states $|2+2\rangle_{L M},|2+1\rangle_{L M},|1+1\rangle_{L M},|10\rangle_{L M}$, and $|00\rangle_{L M}$ in the basis $\left|m_{1} m_{2}\right\rangle$.
(ii) Examine the states in the $\left|m_{1} m_{2}\right\rangle$ basis, where the state of the individual electrons (\#1 and \#2) can be seen, and indicate whether each is symmetric or anti-symmetric under exchange.

See how it works? The highest- L multiplet is always symmetric, the one underneath is antisymmetric by orthogonality with the previous one, etc.

Problem 2: Carbon 2p ${ }^{\mathbf{2}}$

Now we can construct all possible states ${ }^{2 S+1} L_{J}$ of the two p-shell electrons in carbon, and figure out their energy ordering using the Hund rules.
(a) First list all possible ${ }^{2 S+1} L$ states, i.e. ignore J. You should get three. If you get six, you need to apply an important constraint \ldots that is on page $1 \ldots$ second bullet \ldots you just did some relevant work in problem $1 \ldots$
(b) Now apply Hund rule \#1 to figure out which of those three is the ground state. You do not have to memorized Hund \#1 because it is really clear when you remember the exchange force and how it can powerfully affect that repulsive $V_{\text {ee }}$ term!
(c) Next apply Hund rule \#2 to figure out the smaller splitting between the other two states: which has lower E?
(d) Finally consider all possible J values for all the states. There is a 3-fold degeneracy in one of the states ... but it is broken by the spin-orbit interaction. Recalling that $V_{\mathrm{s}-\mathrm{o}} \sim+\vec{l} \cdot \vec{s}$, you won't even have to flip back to read Hund \#3, it is very clear which J value will have the lowest energy and which the highest.
(e) Check your energy-level diagram with NIST! Do you have all five ${ }^{2 S+1} L_{J}$ states in the right order?

