Phys 487 Discussion 4 – Atomic Structure

Summary of the key elements that you must consider in understanding atomic structure are:

- The good quantum numbers of an N-electron atom are
 - the <u>individual</u> l_i of the individual electrons i = 1, ... N (thus, "the Carbon ground state is $1s^2 2s^2 2p^2$ " is a meaningful thing to say)
 - the total L, S, and J quantum numbers

(where total means "of all the electrons")

We have not proved this yet; coming up. It is called the **LS-coupling scheme** and works well when $V_{ee} >> V_{s-o}$ (which is true for all but the heaviest atoms). The term symbol for an atomic state is thus

 $\boxed{\begin{array}{c}2S+1\\2S+1}L_J\end{array}.$

This is exactly the same as for a 1-electron atom, except you replace the single-electron quantum numbers s, l, and j with the <u>total</u> angular momentum quantum numbers S, L, and J.

• The wavefunction of the atomic electrons must be **antisymmetric** under the exchange of any two of them, which can be accomplished by either of these arrangements :

$$\psi(1,2,3,...) = \begin{cases} \psi_{s}(\vec{r}_{1},\vec{r}_{2},...) \cdot \chi_{A}(1,2,...) \\ \psi_{A}(\vec{r}_{1},\vec{r}_{2},...) \cdot \chi_{S}(1,2,...) \end{cases}$$

In words: either the **space part** is symmetric and the **spin part** is antisymmetric, or vice versa. NOTE: Are we certain that the N-electron wavefunction *always factorizes* into a space-only part \times a spin-only part? Yes, thanks to the LS-coupling scheme, which tells us that total-spin S and total-OAM L are <u>separately</u> conserved; the space part of the wavefunction determines L, and the separate spin part determines S.

- The main terms in the Hamiltonian that decide the ordering of energy levels are, in order of size,
 - 1. The **Bohr-model** Hamiltonian $T+V_{\text{Coulomb}}$, whose eigenvalues are determined by the quantum # n
 - 2. The repulsive V_{ee} term we discussed today, whose average size is controlled mainly by S and L

3. The **spin-orbit** V_{s-o} term, whose size is controlled by J

At the end, we went through the **Hund rules**, which specify how to use points 2 and 3 to determine the lowest-lying energy state of an atom:

rule #1 First maximize S to minimize V_{ee} via the <u>exchange force</u>

rule #2 Then maximize L, also to minimize V_{ee} (less dramatically)

rule #3 Then choose J to minimize the V_{s-o}: for shells less than half full, minimize J

for shells more than half full, maximize J

Problem 1 : 1 x 1

We were about to study the Carbon atom in class but didn't quite make it. Its ground-state configuration is

 $1s^2 2s^2 2p^2$

(a) The $1s^2 2s^2$ part comprises two **closed shells**, with total S = 0 and total L = 0. To be certain that this is the case, check the NIST energy level database for the 4-electron atom Beryllium. Does the term symbol you find there for the ground state match S = 0 and L = 0?

(b) Thus, from the perspective of angular momentum, we ignore the closed-shell part and focus on the two

p-shell electrons of Carbon. Each of them has l = 1. How many *ml* states are associated with each electron, and as a result, how many OAM states $| m_{l1}, m_{l2} >$ are there for the 2p² electrons?

(c) $|m_{l1}, m_{l2} >$ is one possible basis; |L, M > is another. Enumerate all possible |L, M > states for the 2p² electrons of carbon, and check that you have the same number of states as in part (b)!

(d) Each *L* value produces a **multiplet** of states $|L, M\rangle$. As it happens, whenever you add two <u>equal</u> angular momenta together (such as $l_1 = 1$ and $l_2 = 1$ in our example), the *L* multiplets have these features :

- every member of an *L* multiplet has <u>definite symmetry under exchange</u> (either symm or anti-symm)
- even values of L produce symmetric states and odd values of L produce anti-symmetric states

You can readily prove this by constructing the Clebsch-Gordan coefficients as we did last year. We also discussed this in class. Let's make sure it is intuitively clear (and that you remember how to use Clebsch-Gordan tables \odot): using the Clebsch-Gordan tables on the website,

- (i) Write down the states $|2+2\rangle_{LM}$, $|2+1\rangle_{LM}$, $|1+1\rangle_{LM}$, $|10\rangle_{LM}$, and $|00\rangle_{LM}$ in the basis $|m_1m_2\rangle$.
- (ii) Examine the states in the $|m_1m_2\rangle$ basis, where the state of the <u>individual electrons</u> (#1 and #2)

can be seen, and indicate whether each is symmetric or anti-symmetric under exchange.

See how it works? The highest-L multiplet is always symmetric, the one underneath is antisymmetric by orthogonality with the previous one, etc.

Problem 2 : Carbon 2p²

Now we can construct *all possible* states ${}^{2S+1}L_J$ of the two p-shell electrons in carbon, and figure out their energy ordering using the Hund rules.

(a) First list all possible ${}^{2S+1}L$ states, i.e. ignore J. You should get **three**. If you get six, you need to apply an important constraint ... that is on page 1 ... second bullet ... you just did some relevant work in problem 1 ...

(b) Now apply Hund rule #1 to figure out which of those three is the ground state. You do not have to memorized Hund #1 because it is really clear when you remember the <u>exchange force</u> and how it can powerfully affect that repulsive V_{ee} term!

(c) Next apply Hund rule #2 to figure out the smaller splitting between the other two states: which has lower E?

(d) Finally consider all possible J values for all the states. There is a 3-fold degeneracy in one of the states ... but it is broken by the spin-orbit interaction. Recalling that $V_{s-o} \sim +\vec{l} \cdot \vec{s}$, you won't even have to flip back to read Hund #3, it is very clear which J value will have the lowest energy and which the highest.

(e) Check your energy-level diagram with NIST! Do you have all five ${}^{2S+1}L_J$ states in the right order?