Phys 487 Discussion 5 - Perturbation Theory: Non-Degenerate, Time-Independent

To enable us to calculate some of the multi-particle effects in atomic energy states, we turn to the study of approximation methods. As you might imagine, this is a substantial segment of quantum mechanics as there are rather few systems that can be solved exactly for their energy eigenvalues and eigenstates! Today, we will learn \& practice Perturbation Theory.

Suppose you have a Hamiltonian $\boldsymbol{H}_{\mathbf{0}}$ that can be solved exactly for its eigenvalues and eigenstates :
Now add a small perturbation \boldsymbol{H}^{\prime} to H_{0}. The resulting Hamiltonian, $H=H_{0}+H^{\prime}$, is not exactly solvable for its eigenstates and eigenvalues ... but we can approach the solution in the manner of a Taylor series: calculate smaller and smaller corrections to the exact eigenvalues and eigenstates, and approach the true values/states via a (probably infinite) series. Here is the notation we will use :

- "zeroth-order" Hamiltonian $H_{0} \quad$ has exact eigenvalues $\left\{E_{n}^{(0)}\right\}$ and eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$
- actual Hamiltonian $H=H_{0}+H^{\prime}$ where H^{\prime} is a small correction to H_{0} (a "perturbation", $H^{\prime} \ll H_{0}$)
- series expansion of H eigenvalues: $E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\ldots$ for each n, where $E_{n}^{(0)} \gg E_{n}^{(1)} \gg E_{n}^{(2)} \gg \ldots$
- series expansion of H eigenstates: $|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\left|n^{(2)}\right\rangle+\ldots$ for each n, where $\left|n^{(0)}\right\rangle \gg\left|n^{(1)}\right\rangle \gg \ldots$

As long as the exact eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$ are non-degenerate and the Hamiltonian $H=H_{0}+H^{\prime}$ has no explicit time-dependence, the formulae for the $1^{\text {st }}$-order and $2^{\text {nd }}$-order corrections to each energy E_{n} are:

$$
\begin{aligned}
& E_{n}^{(1)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle=\text { the expectation value of the perturbation } H^{\prime} \text { in the } n^{\text {th }} \text { exact state. } \\
& E_{n}^{(2)}=\sum_{m \neq n} \frac{\left.\left|\left\langle m^{(0)}\right| H^{\prime}\right| n^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}
\end{aligned}
$$

$$
\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{\left\langle m^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle
$$

I only put the first formula in the box since that is the only one we will use today!

Problem 1 : Warmup Qual Problem

Qual Problem (Colorado)
A particle of mass m is bound in a square well where $-a / 2<x<a / 2$.
(a) What are the energy and eigenfunction of the ground state?
(b) A small perturbation is added, $V(x)=2 \varepsilon|x| / a$ where $\varepsilon \ll 1$. Use perturbation theory to calculate the change in the ground state energy to order $O(\varepsilon)$.

FAQ: Goodness, how can this simple problem be a qual problem? No Formula Sheet, of course. © You must know how to derive the formulae above in your sleep, like Taylor's series! But more practice first.

Consider two electrons bound to a proton by Coulomb interaction. Neglect the Coulomb repulsion between the two electrons.
(a) What are the ground state energy and wave function for this system?
(b) Consider that a weak potential exists between the two electrons of the form

$$
V\left(\vec{r}_{1}-\vec{r}_{2}\right)=V_{0} \delta^{3}\left(\vec{r}_{1}-\vec{r}_{2}\right) \vec{s}_{1} \cdot \vec{s}_{2}
$$

where V_{0} is a constant and \vec{s}_{j} is the spin operator for electron j (neglect the spin-orbit interaction).
Use first-order perturbation theory to estimate how this potential alters the ground state energy.
Problem $3 \rightarrow$ Hwk 5 Problem 1: Two Identical Bosons in ∞ Well, now with a weak interaction Griffiths 6.3
Two identical bosons are placed in an infinite square well with $V=0$ from $x=0$ to $x=a$, and $V=\infty$ everywhere else. The bosons interact weakly with one another, via the potential

$$
V\left(x_{1}, x_{2}\right)=-a V_{0} \delta\left(x_{1}-x_{2}\right)
$$

where V_{0} is a constant with dimensions of energy.
(a) First, ignoring the interaction between the particles, find the ground state and the first excited state - both the wave functions and the associated energies. (This is our standard Sandbox system, so by all means just write down what the single-particle wavefunctions without any/much derivation.)
(b) Use first-order perturbation theory to estimate the effect of the particle-particle interaction above on the energies of the ground state and the first excited state.

