Phys 487 Discussion 6 - Degenerate Perturbation Theory

The Old Stuff : Formulae for perturbative corrections to non-degenerate states are on last page.
The New Stuff : The Procedure for dealing with degenerate states
Perturbation theory always starts with an "unperturbed" Hamiltonian H_{0} whose eigenstates $\left\{\left|n^{(0)}\right\rangle\right.$ or $\left.\psi_{n}^{(0)}\right\}$ and eigenvalues $\left\{E_{n}^{(0)}\right\}$ can be obtained exactly. A small perturbing Hamiltonian $H^{\prime} \ll H_{0}$ is then added to H_{0} to produce the full Hamiltonian $H=H_{0}+\varepsilon H^{\prime}$. This is the Hamiltonian whose eigen-things we would like to obtain. I have attached a dimensionless scale factor $\varepsilon \ll 1$ to H^{\prime} so that I can easily keep track of orders of smallness. (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)

Suppose that a subset of the unperturbed eigen-energies $\left\{E_{n}^{(0)}\right\}$ are degenerate, i.e. have the same value E_{α}. Let the quantum numbers of these degenerate eigenstates be $\{\alpha 1, \alpha 2, \alpha 3, \ldots, \alpha n\}$. If we write H_{0} in matrix form using as basis the unperturbed eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$, we get the diagonal matrix $\left(\mathbf{H}_{0}\right)_{m n} \equiv\left\langle m^{(0)}\right| \hat{H}_{0}\left|n^{(0)}\right\rangle$:

$$
\mathbf{H}_{0}=\left(\begin{array}{ccccc}
E_{1}^{(0)} & & & & \\
& E_{2}^{(0)} & & & \\
\\
& & \boldsymbol{E}_{\alpha} & & \\
\\
& & & \boldsymbol{E}_{\alpha} & \\
& & & & E_{5}^{(0)} \\
\\
& & & & \\
& & & & \\
& & \ldots
\end{array}\right) \text { where all the empty elements are } 0
$$

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily. The degenerate states $\left\{\left|\alpha_{1}^{(0)}\right\rangle, \ldots,\left|\alpha_{n}^{(0)}\right\rangle\right\}$, which are just $\left\{\left|3^{(0)}\right\rangle,\left|4^{(0)}\right\rangle\right\}$ here, form a degenerate subspace where any linear combination of the $\mid \alpha_{\mathrm{i}}$ >'s is also an eigenstate of H_{0} with the same eigenvalue E_{α}.

Degenerate perturbation theory is accomplished by finding a particular set of linear combinations of the $\mid \alpha_{i}>$'s, i.e. within the degenerate subspace, that diagonalizes the perturbation matrix $\left(\mathbf{H}^{\prime}\right)_{i j} \equiv\left\langle i^{(0)}\right| \hat{H}^{\prime}\left|j^{(0)}\right\rangle$.

Once you have found these linear combinations $\left\{\left|\beta_{1}^{(0)}\right\rangle, \ldots,\left|\beta_{n}^{(0)}\right\rangle\right\}$, i.e. the eigenvectors of H^{\prime} within the degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections :

$$
E_{\beta_{i}}^{(1)}=\left\langle\beta_{i}^{(0)}\right| H^{\prime}\left|\beta_{i}^{(0)}\right\rangle
$$

These are the expectation values of H^{\prime} in the new basis states $\left|\beta_{i}^{(0)}\right\rangle$, i.e. it is exactly our normal formula for $E_{i}^{(1)}$, just using the new basis.

Consider a quantum system with only three linearly independent states. We label these states $|1\rangle,|2\rangle,|3\rangle$. The system's Hamiltonian, expressed in the ordered basis $\{|1\rangle,|2\rangle,|3\rangle\}$, is

$$
\mathbf{H}=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 1 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

where V_{0} is a constant that we will immediately set to 1 for convenience and ε is a small number $\ll 1$.
(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian , i.e. the Hamiltonian you obtain by setting the small parameter ε to zero.
(b) Solve for the exact eigenvalues of \mathbf{H} without using any perturbation-theory formulae at all. Expand each of them as a power series in ε, up to second order.
(c) Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the state that grows out of the non-degenerate eigenvector of H_{0}. Does it match the exact value from (b)?
(d) Now apply the $1^{\text {st-order non-degenerate }}$ PT formula to find the approximate eigenvalues for the states that grow out of the degenerate eigenvectors of H_{0}. You have the exact results from (b) ... do the non-degenerate formulae work give the correct energy corrections for states \#1 and \#2?
(e) It appears we don't need degenerate perturbation theory at all! How disappointing! WHY did nondegenerate formulae work for degenerate states \#1 \& \#2 without any effort?
${ }^{1}$ Q1 (a) Since H_{0} is diagonal, it is written in terms of its own eigenvectors. ... Turning those words around, the eigenvectors of H_{0} are the basis vectors in terms of which H_{0} is written: $\begin{gathered}\text { eigen- } \\ \text { vector }\end{gathered}\left|1^{(0)}\right\rangle$ of $H_{0}=\underset{\text { vector }}{\operatorname{basis}}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad\left|2^{(0)}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad\left|3^{(0)}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. As always with a diagonal matrix, the diagonal elements are the eigenvalues : $E_{1}^{(0)}=1, \quad E_{2}^{(0)}=1, \quad E_{3}^{(0)}=2$.
(b) exact eigenvalues of H Taylor-approximated to order ε^{2} are : $E_{1}=1-\varepsilon, E_{2}=1-\varepsilon^{2}, E_{3}=2+\varepsilon^{2}$
(c) non-degenerate state is \#3 \ldots sum of corrections to $2^{\text {nd }}$ order is
$E_{3}^{(0)+(1)+(2)}=E_{3}^{(0)}+H_{33}^{\prime}+\left[\frac{\left|H_{13}^{\prime}\right|^{2}}{E_{3}^{(0)}-E_{1}^{(0)}}+\frac{\left|H_{23}^{\prime}\right|^{2}}{E_{3}^{(0)}-E_{2}^{(0)}}\right]=2+0+\left[\frac{0^{2}}{2-1}+\frac{\varepsilon^{2}}{2-1}\right]=2+\varepsilon^{2} \boldsymbol{\nu} \odot$
(d) degenerate states are \#1 and $\# 2 \ldots$ correcting to $1^{\text {st }}$ order, $E_{1}^{(0)+(1)}=E_{1}^{(0)}+H_{11}^{\prime}=1-\varepsilon \boldsymbol{V}$ and $E_{2}^{(0)+(1)}=E_{2}^{(0)}+H_{22}^{\prime}=1+0=1 \boldsymbol{V}$
(e) The perturbation H^{\prime} is already diagonal in the degenerate subspace of $\{\mid$ state $\# 1\rangle$, \mid state $\left.\left.\# 2\right\rangle\right\}$, i.e. the off-diagonal matrix elements $H^{\prime}{ }_{12}$ and $H^{\prime}{ }_{21}$ within this subspace are zero.

Now that we have a good idea of how this works, let's work with a system where we DO need to do something to obtain the energy corrections for a pair of degenerate states. Here is a different Hamiltonian for the same 3level system:

$$
\mathbf{H}=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 2 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

where V_{0} is set to 1 (poof!) by an ingenious choice of units.
(a) Write down the eigenvalues of the unperturbed part, H_{0}, of the Hamiltonian.
(b) Find the exact eigenvalues E_{1}, E_{2}, and E_{3} of the full Hamiltonian, H.
(c) Apply our standard, non-degenerate-PT formulae to read off the energy corrections to all three states at first order in ε. Do they give the correct results this time?
(d) No they do not! WHY NOT?
(e) This time, we $d o$ have to apply our degenerate-PT prescription to obtain $1^{\text {st }}$ order corrections for the degenerate states \#2 and \#3. Do that!
${ }^{2} \mathbf{Q 2}$ (a) $E_{1,2,3}^{(0)}=1,2,2$ (b) exact eigenvalues are $E_{1,2,3}=1-\varepsilon, 2-\varepsilon, 2+\varepsilon \rightarrow$ this time all corrections are exactly $1^{\text {st }}$ order in ε (c) correcting to $1^{\text {st }}$ order, $E_{1} \approx E_{1}^{(0)}+H_{11}^{\prime}=1-\varepsilon \boldsymbol{\checkmark} \ldots E_{2} \approx E_{2}^{(0)}+H_{22}^{\prime}=2+0=2 \mathbf{X} \ldots E_{3} \approx E_{3}^{(0)}+H_{33}^{\prime}=2+0=2 \mathbf{x}$
(d) The perturbation H^{\prime} is not diagonal this time in the degenerate subspace of $\{\mid$ state \# 2\rangle, |state \# 3$\left.\rangle\right\}$, i.e. the off-diagonal matrix elements H_{23}^{\prime} and H_{32}^{\prime} within this subspace are NOT zero.
(e) Focus on the degenerate subspace $\mathrm{D}=\{|2\rangle,|3\rangle\} \ldots$ Within this subspace, the perturbing matrix H^{\prime} is $\left(\begin{array}{cc}H_{22}^{\prime} & H_{23}^{\prime} \\ H_{32}^{\prime} & H_{33}^{\prime}\end{array}\right)=\left(\begin{array}{ll}2 & \varepsilon \\ \varepsilon & 2\end{array}\right)$
... We must find a new basis $\left\{\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}$ for the subspace D that diagonalizes this 2×2 matrix \ldots

To diagonalize a matrix, find its eigenvectors and use them as your new basis ...
The eigenvectors of $H_{\mathrm{D}}^{\prime}=\left(\begin{array}{cc}2 & \varepsilon \\ \varepsilon & 2\end{array}\right)$ are $\sim\binom{ \pm 1}{1}$ with eigenvalues $2 \pm \varepsilon \ldots$
When the matrix $\left(\begin{array}{ll}2 & \varepsilon \\ \varepsilon & 2\end{array}\right)$ is expressed in its own eigen-basis $\left\{\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}=\frac{1}{\sqrt{2}}\left\{\binom{1}{1},\binom{-1}{1}\right\}$, it will be diagonal with its eigenvalues as its diagonal elements (I hope this is becoming obvious; if not, ask!!!) ... it will become $\left(\begin{array}{cc}2+\varepsilon & 0 \\ 0 & 2-\varepsilon\end{array}\right) \ldots$ Now return to the full 3-dimensional space of our system, what basis vectors are we switching to? ...
Only the degenerate subspace $D=\{|2\rangle,|3\rangle\}$ is altered, $|1\rangle$ is left unchanged \ldots
Our new basis vectors for the system are $\left\{|1\rangle,\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\} \ldots$
What is the Hamiltonian matrix in the new basis? $\ldots H=\left(\begin{array}{ccc}1-\varepsilon & 0 & 0 \\ 0 & 2+\varepsilon & 0 \\ 0 & 0 & 2-\varepsilon\end{array}\right) \rightarrow H_{0}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right) \& H^{\prime}=\left(\begin{array}{ccc}-\varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & -\varepsilon\end{array}\right)$

Problem 3 : Qual Time! A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy $V(r)$. A weak perturbation $\delta V(x, y, z)$ is applied:

$$
V(r)=\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right) \quad \text { and } \quad \delta V(x, y, z)=U x y z+\frac{U^{2}}{\hbar \omega} x^{2} y^{2} z^{2}
$$

where U is a small parameter. Use perturbation theory to calculate the change in the ground state energy to order $O\left(U^{2}\right)$. Use without proof all the results you like from the 1D SHO \rightarrow see supplementary file on website.
------ Formulae for perturbative corrections to non-degenerate states

- "zeroth-order" Hamiltonian H_{0} has exact eigenvalues $\left\{E_{n}^{(0)}\right\}$ and eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$
- actual Hamiltonian $H=H_{0}+H^{\prime} \quad$ where H^{\prime} is a small correction to H_{0} (a "perturbation", $H^{\prime} \ll H_{0}$)
- series expansion of H eigenvalues: $E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\ldots$ for each n, where $E_{n}^{(0)} \gg E_{n}^{(1)} \gg E_{n}^{(2)} \gg \ldots$
- series expansion of H eigenstates: $|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\left|n^{(2)}\right\rangle+\ldots$ for each n, where $\left|n^{(0)}\right\rangle \gg\left|n^{(1)}\right\rangle \gg \ldots$

As long as the unperturbed eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$ are non-degenerate and the Hamiltonian $H=H_{0}+H^{\prime}$ has no explicit time-dependence, the corrections to the energy eigenvalues E_{n} and eigenstates $|n\rangle$ are given by

- $E_{n}^{(1)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle=$ expectation value of H^{\prime} in the $n^{\text {th }}$ unperturbed state $=$ matrix element $H_{n n}^{\prime}$
- $\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle \quad$ where $H_{m n}^{\prime}$ is the matrix element $\left\langle m^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$
$\bullet E_{n}^{(k)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(k-1)}\right\rangle$ for higher orders \ldots which gives $E_{n}^{(2)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{\left|H_{m n}^{\prime}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}$

