
Phys 487 Discussion 6 – Degenerate Perturbation Theory

The Old Stuff : Formulae for perturbative corrections to non-degenerate states are on last page.

The New Stuff : The Procedure for dealing with degenerate states

Perturbation theory always starts with an “unperturbed” Hamiltonian H0 whose eigenstates n(0)  or ψ n
(0){ }  

and eigenvalues En
(0){ }  can be obtained exactly.  A small perturbing Hamiltonian H′ << H0 is then added to H0 

to produce the full Hamiltonian H = H0 + ε ′H .  This is the Hamiltonian whose eigen-things we would like to 
obtain.  I have attached a dimensionless scale factor ε << 1 to H′ so that I can easily keep track of orders of 
smallness.  (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)  

Suppose that a subset of the unperturbed eigen-energies En
(0){ }  are degenerate, i.e. have the same value Eα.

Let the quantum numbers of these degenerate eigenstates be { α1, α2, α3, …, αn }.  If we write H0 in matrix 
form using as basis the unperturbed eigenstates n(0){ } ,  we get the diagonal matrix H0( )mn ≡ m(0) Ĥ0 n

(0) : 

	 	 H0 =

E1
(0)

E2
(0)

Eα
Eα

E5
(0)

...

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   where all the empty elements are 0. 

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily.  
The degenerate states α 1

(0) , ..., α n
(0){ } , which are just 3(0) , 4(0){ }  here,  form a degenerate subspace 

where any linear combination of the | αi >’s is also an eigenstate of H0 with the same eigenvalue Eα. 

Degenerate perturbation theory is accomplished by finding a particular
set of linear combinations of the | αi >’s, i.e. within the degenerate subspace, 

that diagonalizes the perturbation matrix ′H( )ij ≡ i(0) ˆ ′H j (0) .

Once you have found these linear combinations β1
(0) , ..., β n

(0){ } ,  i.e. the eigenvectors of H′ within the 

degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections :

	 	 Eβi
(1) = β i

(0) ′H β i
(0)

These are the expectation values of H′ in the new basis states β i
(0) , i.e. it is exactly our normal formula for 

Ei
(1) , just using the new basis.  



Problem 1 : A Perturbed Hamiltonian in Matrix Form	 adapted from Griffiths 6.9, Checkpoints 1

Consider a quantum system with only three linearly independent states.  We label these states 1 , 2 , 3 .  
The system’s Hamiltonian, expressed in the ordered basis 1 , 2 , 3{ } , is  

	 	 H =V0

(1− ε ) 0 0
0 1 ε
0 ε 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where V0 is a constant that we will immediately set to 1 for convenience  and ε is a small number << 1. 

(a)  Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian , i.e. the Hamiltonian you 
obtain by setting the small parameter ε to zero.  

(b)  Solve for the exact eigenvalues of H without using any perturbation-theory formulae at all.  Expand each of 
them as a power series in ε, up to second order. 

(c)  Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the 
state that grows out of the non-degenerate eigenvector of H0.  Does it match the exact value from (b)? 

(d)  Now apply the 1st-order non-degenerate PT formula to find the approximate eigenvalues for the states that 
grow out of the degenerate eigenvectors of H0.  You have the exact results from (b) … do the non-degenerate 
formulae work give the correct energy corrections for states #1 and #2? 

(e)  It appears we don’t need degenerate perturbation theory at all!  How disappointing!  WHY did non-
degenerate formulae work for degenerate states #1 & #2 without any effort ? 

1 Q1  (a)  Since H0 is diagonal, it is written in terms of its own eigenvectors. … Turning those words around, the eigenvectors of H0 

are the basis vectors in terms of which H0 is written:  eigen-
vector

1(0) of H0 = basis
vector

1
0
0

⎛

⎝
⎜

⎞

⎠
⎟ , 2(0) =

0
1
0

⎛

⎝
⎜

⎞

⎠
⎟ , 3(0) =

0
0
1

⎛

⎝
⎜

⎞

⎠
⎟ .

As always with a diagonal matrix, the diagonal elements are the eigenvalues : E 1
(0) = 1 ,   E 2

(0) = 1 ,   E 3
(0) = 2 .  

(b)  exact eigenvalues of H Taylor-approximated to order ε² are :  E1 = 1 – ε,   E2 = 1 – ε²,   E3 = 2 + ε²   
(c)  non-degenerate state is #3 … sum of corrections to 2nd order is 

E 3
(0)+(1)+(2) = E3

(0) + ′H 33 +
′H13
2

E3
(0) − E1

(0) +
′H23
2

E3
(0) − E2

(0)
⎡

⎣
⎢

⎤

⎦
⎥ = 2 + 0 +

02

2 − 1
+

ε 2

2 − 1
⎡
⎣⎢

⎤
⎦⎥
= 2 + ε 2  ✔ ☺︎ 

(d) degenerate states are #1 and #2 … correcting to 1st order, E 1
(0)+(1) = E1

(0) + ′H11 = 1 – ε  ✔ and E 2
(0)+(1) = E2

(0) + ′H22 = 1+ 0 = 1 ✔
(e)  The perturbation H′ is already diagonal in the degenerate subspace of state #1 , state # 2{ } , i.e. the off-diagonal matrix 
elements H′12 and H′21 within this subspace are zero.  



Problem 2 : Now let’s use our new technique 	 Checkpoints 2

Now that we have a good idea of how this works, let’s work with a system where we DO need to do something 
to obtain the energy corrections for a pair of degenerate states.  Here is a different Hamiltonian for the same 3-
level system: 

	 	 H =V0

(1− ε ) 0 0
0 2 ε
0 ε 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

           where V0 is set to 1 (poof!) by an ingenious choice of units.  

(a)  Write down the eigenvalues of the unperturbed part, H0, of the Hamiltonian.

(b)  Find the exact eigenvalues E1, E2, and E3 of the full Hamiltonian, H.  

(c)  Apply our standard, non-degenerate-PT formulae to read off the energy corrections to all three states at first 
order in ε.  Do they give the correct results this time? 

(d)  No they do not!  WHY NOT? 

(e)  This time, we do have to apply our degenerate-PT prescription to obtain 1st order corrections for the 
degenerate states #2 and #3.  Do that! 

2 Q2  (a)  E 1,2,3
(0) = 1 , 2, 2   (b)  exact eigenvalues are E1,2,3 = 1 – ε,   2 – ε,  2 + ε → this time all corrections are exactly 1st order in ε 

(c) correcting to 1st order, E 1 ≈ E1
(0) + ′H11 = 1 – ε  ✔ ... E 2 ≈ E2

(0) + ′H22 = 2 + 0 = 2  ✘ …  E 3 ≈ E3
(0) + ′H 33 = 2 + 0 = 2  ✘

(d) The perturbation H′ is not diagonal this time in the degenerate subspace of state # 2 , state # 3{ } , 
      i.e. the off-diagonal matrix elements H′23 and H′32 within this subspace are NOT zero.

(e)  Focus on the degenerate subspace D= 2 , 3{ }… Within this subspace, the perturbing matrix H′ is 
′H22 ′H23
′H 32 ′H 33

⎛
⎝

⎞
⎠ = 2 ε

ε 2( ) 
… We must find a new basis β2 , β3{ }  for the subspace D that diagonalizes this 2×2 matrix … 

To diagonalize a matrix, find its eigenvectors and use them as your new basis … 

The eigenvectors of ′HD = 2 ε
ε 2( )  are ~ ±1

1( )  with eigenvalues 2 ± ε  … 

When the matrix 2 ε
ε 2( )  is expressed in its own eigen-basis β2 , β3{ } =

1

2
1
1( ), –1

1( ){ } ,  it will be diagonal with its

eigenvalues as its diagonal elements (I hope this is becoming obvious; if not, ask!!!)  … it will become 2 + ε 0
0 2 − ε( )  … 

Now return to the full 3-dimensional space of our system, what basis vectors are we switching to?  … 
Only the degenerate subspace D= 2 , 3{ }  is altered, 1  is left unchanged …

Our new basis vectors for the system are 1 , β2 , β3{ }=
1
0
0

⎛

⎝
⎜

⎞

⎠
⎟ ,

1

2

0
1
1

⎛

⎝
⎜

⎞

⎠
⎟ ,

1

2

0
−1
1

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  … 

What is the Hamiltonian matrix in the new basis? … H =
1− ε 0 0
0 2 + ε 0
0 0 2 – ε

⎛
⎝⎜

⎞
⎠⎟

 → H0 =
1 0 0
0 2 0
0 0 2

⎛
⎝⎜

⎞
⎠⎟

 & ′H =
−ε 0 0
0 ε 0
0 0 −ε

⎛
⎝⎜

⎞
⎠⎟

What are the 1st-order energy corrections? … E1 ≈ E1
(0) + ′H11 = 1 – ε ,  similarly E2 ≈ 2 + ε  and E3 ≈ 2 − ε  ✔ matches exact (b)



Problem 3 : Qual Time! A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy V(r).  A weak perturbation δV(x,y,z) is applied:  

	 	 V (r) = mω
2

2
x2+y2 + z2( ) 	 	 and 	

 
δV (x, y, z) =U xyz + U

2

!ω
x2y2z2  

where U is a small parameter.  Use perturbation theory to calculate the change in the ground state energy to 
order O(U2).  Use without proof all the results you like from the 1D SHO → see supplementary file on website.

—————— Formulae for perturbative corrections to non-degenerate states ——————

	 • “zeroth-order” Hamiltonian H0 		 has exact eigenvalues En
(0){ }  and eigenstates n(0){ }

	 • actual Hamiltonian H = H0 + ′H   	where ′H  is a small correction to H0 (a “perturbation”,  ′H ≪ H0 )

	 • series expansion of H eigenvalues: 	En = En
(0) + En

(1) + En
(2) + ...  for each n, where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • series expansion of H eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ...

As long as the unperturbed eigenstates n(0){ }  are non-degenerate and the Hamiltonian H = H0 + ′H  has 
no explicit time-dependence,  the corrections to the energy eigenvalues En and eigenstates n  are given by

	 ●  E n
(1) = n(0) ′H n(0)   = expectation value of H′ in the nth unperturbed state = matrix element ′Hnn

	 ●  n(1) = ′Hmn
En
(0) − Em

(0)
m≠n
∑ m(0)   where ′Hmn  is the matrix element m(0) ′H n(0)

	 ●  E n
(k ) = n(0) ′H n(k−1)   for higher orders   ...   which gives En

(2) = n(0) ′H n(1) =
′Hmn

2

En
(0) − Em

(0)
m≠n
∑


