Phys 487 Discussion 10 — Time-Dependent PT with 2-State Systems

Same formula summary as last week : Consider a system with Hamiltonian H(t)= H” + H’(¢) , where
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n °
express any time-dependent state |\W(¢)) of this system as a superposition of the unperturbed states |n(°)> with
amplitudes c¢,(?) :

n(°)> } are the known eigen-values/states of the “unperturbed” time-independent part H'” . We can
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If H is very small compared to Ho, we can obtain an approximate solution for the amplitudes c.(¢) by expanding
them in powers of this smallness — this is time-dependent perturbation theory. We find
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wy is called the transition frequency for going from initial state i (at time 7o) to final state f (at time ?);

cA?t) is called the transition amplitude for this i — ftransition. The transition probability that we are usually
trying to calculate is, as usual, the magnitude? of the corresponding amplitude :
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Problem 1 : Two-state hydrogen atom in electric field adapted from Griffiths 9.1 1

Systems with only two independent states are excellent sandboxes for playing around with time-dependent
potentials since you can readily write down all the matrix elements of H ]’,n . Let’s take a specific case:

A hydrogen atom is placed in a time-dependent electric field E = E(¢)Z . Ignore spin throughout.

(a) Calculate all four matrix elements H l} of the perturbation H’ = e E z between the ground state (n = 1)
and the quadruply degenerate first excited states (n = 2).

(b) Show that the diagonal elements H; of the perturbation are both zero for all five states.
» NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the

n =2 states is “accessible” from the ground state by a perturbation of this form, and therefore the system
functions as a two-state configuration — assuming transitions to higher excited states can be ignored.

(c) Itis very commonly the case that the diagonal elements H/, of a time-dependent perturbation are zero.
In this case, the exact differential equations
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1 Q1 (a) Hints: You must calculate H'»; for the four different energy eigenstates of hydrogen with principal quantum number n=2.
What are these four n=2 states? ... A complete hydrogen wavefunction needs 3 quantum numbers (when spin is ignored)

..Inlm> ... the four degenerate n=2 states are In/m>=1200>, [21+1>, 1210>, and I21-1>

.. How do you calculate H2;? Remember that it’s called a “transition matrix element”, that should help ... the formula is at the top!

.. H21=<2Im|IH 1100>=<2Ilm| eE z1100>... You will need the hydrogen wavefunctions, so consult the 486 formula sheet

.. Answer: The only non-zero matrix element is <210 | H" [ 100 > = -28/(35\/2) eEay.

.. Wait, that was H’>1, what about H’'12? You don’t have to calculate it explicitly if you remember a property of all Hamiltonians

.. The important property starts with H ... Hermitian! — H’>; = H'12* which here is just Hia.



for the two coefficients c¢,(¢) and c,(¢) (using Griffiths’ notation for two states) reduce to two coupled
differential equations without summation signs. Show that the above reduces to these two in the case H; =0:
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(hardly seems worth defining a new variable!)

These are Eq. 9.13 in Griffiths; most of his chapter 9 is based on this pair of equations.

NOTATION CHANGE : We will henceforth stop placing a superscript © on the states and energies of the
unperturbed system. Reason? We are ALWAYS referring to the states of the unperturbed system in time-
dependent PT, so there is no reason to flag it with such notation. As we mentioned in class, the goal of time-
dependent PT is quite different from that of time-independent PT.

« t-indep. PT : calculate changes to the eigenenergies & eigenstates of Hy produced by the perturbation H’
e t-dep. PT : calculate transition probabilities caused by H’ between states of the unperturbed system Ho

Problem 2 : Rabi flopping frequency adapted from Griffiths 9.7

A rare example of a system that can be solved exactly is the important case of a two-state problem with a
sinusoidal oscillating potential. The system is often an atom or a molecule, with two states of particular interest
or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency w is
tuned to the transition frequency wab = (Ea-Ep)/h between the two states.

Here is a simplified expression for the sinusoidal perturbation V() cos(wt).after it is applied to a system with
two states a and b in the case that the driving frequency w is very close to the transition frequency wap : (see 2)
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(a) Solve the two coupled equations you obtained in problem 1(c) using the initial conditions c4(0) = 1 and
c»(0) =0 (i.e. the system starts in state a at time ¢ = 0). Express your results for cq(7) and c;(?) in terms of

1
W, = E\/ (a) -0, )2 + ( |Vab | /h)2 , called the Rabi flopping frequency. Answers in footnote?.

(b) Determine the transition probability P,_,, (#) and show that it never exceeds 1. Confirm that

c,(t) ‘2 +| c,(t) ‘2 =1 at all times. (What would it mean if that were not true? Ask if you’re not sure!)

(c) Check that P, (¢) reduces to the perturbation theory result
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when the perturbation is “small”, and state precisely what small means in this context, as a constraint on V.
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(d) At what time does the system first return to its initial state?

2 Griffiths §9.1.3 shows how the approximation @ = wo= wp, is applied.
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