
Phys 487 Discussion 10 – Time-Dependent PT with 2-State Systems 

Same formula summary as last week : Consider a system with Hamiltonian � , where 
�  are the known eigen-values/states of the “unperturbed” time-independent part � .  We can 
express any time-dependent state �  of this system as a superposition of the unperturbed states �  with 
amplitudes cn(t) : 

  where  

If H′ is very small compared to H0, we can obtain an approximate solution for the amplitudes cn(t) by expanding 
them in powers of this smallness → this is time-dependent perturbation theory. We find 

  at 1st order in , given the initial state .

ωfi is called the transition frequency for going from initial state i (at time t0) to final state f (at time t);  
cf(t) is called the transition amplitude for this i → f transition.  The transition probability that we are usually 
trying to calculate is, as usual, the magnitude² of the corresponding amplitude : 

�

Problem 1 : Two-state hydrogen atom in electric field adapted from Griffiths 9.1 1

Systems with only two independent states are excellent sandboxes for playing around with time-dependent 
potentials since you can readily write down all the matrix elements of � .  Let’s take a specific case:  

A hydrogen atom is placed in a time-dependent electric field � .  Ignore spin throughout. 

(a)  Calculate all four matrix elements � of the perturbation �  between the ground state (n = 1) 
and the quadruply degenerate first excited states (n = 2).  

(b)  Show that the diagonal elements �  of the perturbation are both zero for all five states.  

▶ NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the 
n = 2 states is “accessible” from the ground state by a perturbation of this form, and therefore the system 
functions as a two-state configuration — assuming transitions to higher excited states can be ignored.  

(c)  It is very commonly the case that the diagonal elements �  of a time-dependent perturbation are zero.  
In this case, the exact differential equations

�
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′Hij ′H = eE z

′Hii

′Hii

 
i! "c f (t) = ′Hfn e

iω fntcn(t)
n
∑

 Q1 (a) Hints: You must calculate H′21 for the four different energy eigenstates of hydrogen with principal quantum number n=2.  1

What are these four n=2 states?  … A complete hydrogen wavefunction needs 3 quantum numbers (when spin is ignored) 
… | n l m > … the four degenerate n=2 states are | n l m > = | 2 0 0 >,  | 2 1 +1 >,  | 2 1 0 >,  and | 2 1 –1 >
… How do you calculate H′21?  Remember that it’s called a “transition matrix element”, that should help … the formula is at the top!
… H′21 = < 2lm | H′ | 100 > = < 2lm | eE z | 100 >… You will need the hydrogen wavefunctions, so consult the 486 formula sheet 
… Answer: The only non-zero matrix element is < 210 | H′ | 100 > = -28/(35√2) eEa0.  
… Wait, that was H′21, what about H′12?  You don’t have to calculate it explicitly if you remember a property of all Hamiltonians
… The important property starts with H … Hermitian!   → H′21 = H′12* which here is just H12.



for the two coefficients �  and � (using Griffiths’ notation for two states) reduce to two coupled 
differential equations without summation signs.  Show that the above reduces to these two in the case � :

�    &  �     with �

These are Eq. 9.13 in Griffiths; most of his chapter 9 is based on this pair of equations.  

NOTATION CHANGE : We will henceforth stop placing a superscript (0) on the states and energies of the 
unperturbed system.  Reason?  We are ALWAYS referring to the states of the unperturbed system in time-
dependent PT, so there is no reason to flag it with such notation.  As we mentioned in class, the goal of time-
dependent PT is quite different from that of time-independent PT.  

• t-indep. PT : calculate changes to the eigenenergies & eigenstates of H0 produced by the perturbation H ′
• t-dep.    PT : calculate transition probabilities caused by H ′ between states of the unperturbed system H0 

Problem 2 : Rabi flopping frequency adapted from Griffiths 9.7

A rare example of a system that can be solved exactly is the important case of a two-state problem with a 
sinusoidal oscillating potential.  The system is often an atom or a molecule, with two states of particular interest 
or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency ω is 
tuned to the transition frequency ωab = (Ea-Eb)/ℏ between the two states.  

Here is a simplified expression for the sinusoidal perturbation � after it is applied to a system with
two states a and b in the case that the driving frequency ω is very close to the transition frequency ωab : (see )2

� ,     � ,     �     with    � .

(a)  Solve the two coupled equations you obtained in problem 1(c) using the initial conditions ca(0) = 1 and 
cb(0) = 0 (i.e. the system starts in state a at time t = 0).  Express your results for ca(t) and cb(t) in terms of

, called the Rabi flopping frequency.  Answers in footnote .3

(b)  Determine the transition probability �  and show that it never exceeds 1.  Confirm that 

 at all times.  (What would it mean if that were not true?  Ask if you’re not sure!) 

(c)  Check that �  reduces to the perturbation theory result 

�

when the perturbation is “small”, and state precisely what small means in this context, as a constraint on V.  

(d)  At what time does the system first return to its initial state?  
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  Griffiths §9.1.3 shows how the approximation ω ≈ ω0 ≡ ωba is applied.  2
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