Phys 487 Discussion 11 — Fermi’s Golden Rule
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Problem 1 : Fermi’s Golden Rule for a constant perturbation

In class, we derived Fermi’s Golden Rule for a perturbation that oscillates sinusoidally with time (typically in
the form of EM radiation) and that is ON for a very long time. As it happens, Fermi’s Golden Rule also applies
for another extremely common type of perturbation: a potential that is constant with time, it merely turns on

and off. An example: a simple Stark and/or Zeeman effect experiment when a field E (¥) and/or I§(? ) is turned
on at some time ¢ = 0 and turned off later. So off we go!

The simplest time-dependent perturbation is a constant potential V that just “turns on” at some time =0 :
V(t)=0fort<0 & V() = V=constant for > 0.

Important: we are NOT saying that V is constant versus POSITION, only with respect to time. In all of our
time-dependent PT work, it is implied that the perturbation labelled “V”” or “H”” DOES in general have some 7 -
dependence, it will just end up in a transition matrix element Vs = < yr| V| ¢; > that we will have to calculate
(as an integral over position) if we want a specific answer for a specific V. If we ever need to specify a potential
that is independent of position, we will call it something like “Vo” to denote one single scalar value.

Now suppose we have a system with a solvable unperturbed Hamiltonian Ho plus the on/off perturbation V(#)
given above. What is the transition probability F,_, =1 ¢s(?) I? to first order?
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You will need the “half-angle formula” 1-cos6 =2sin*(6/2).

(a) Derive the following result : P_,

» Is your first thought that the result is a typo? It is always my first thought when seeing that expression for a
simple time-independent perturbation that just turns ON once and OFF once! “We saw that sin?(w?/2) stuff
when we worked with sinusoidal perturbations in class, surely it is just a copy/paste error?” Indeed one would
think that such a term only appears for sinusoidal perturbations, but no! Start your calculation from time-
dependent PT basics (back to the formula sheet!), and observe how that same time-dependent term arises even
for our much simpler ON/OFF perturbation. (Actually, look closely: is Pi— the same or just similar to the
sinusoidal case?)
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(b) Prove the following weird but important Dirac delta-function relation : d(ax)=——.
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P Remember that the defining properties of the Dirac delta are on your 486 formula sheet, consult those to
derive/prove the above relation, and the one in the next part.
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(c) Prove that the following is a delta function : lim—L(‘jx) = Sth X
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5(x). (You will need j ” dx=1)
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(d) Combining the above, show that the transition rate | R, ,, = Tf = 7|Vﬁ| o (E P Ei) in the limit where

energy is conserved, i.e. where (E - El.) —0.
This relation is one form of Fermi's Golden Rule for energy-conserving transitions.

(e) Is it reasonable to insist that energy is conserved despite the change in potential energy? Return to
expression (a) and consider its dependence on @, =71(E, — E;). As you can quickly check with some sort of
machine, the function sin® x /x> is peaked at x=0 and has a width of about 7t. (It reaches 0.4 = ! at x = +7/2).
Given this info, what range of wy values keeps the transition probability P;—r within a factor of about 2 of its
maximum value? Your answer will involve time, t. Does the range of probable transition frequencies increase
or decrease with 7?7

(f) Hopefully what you found was that, as t — %, the width in reasonably-probable transition frequencies goes
to zero. This is a very important result! What does ¢ represent, exactly? Once you know, you can say
something like this

“In the limit that the perturbation V() (words) , the only transition frequency with
any finite probability is wfi = , which means that energy is in this limit.”

We have thus clarified the conditions under which part (d) is a valid result.

(g) You just found that energy is conserved more exactly in the transition from state 7 to state f as the time ¢
that the perturbation has been ON increases. What relation involving a German name is this related to?

(h) The perturbation can never be on forever, i.e. we can never reach the limit t — %, so there is always some
non-zero range of final-state energies Er= E; that can be reached from an initial-state energy E; ... but a
transition E; — Ercan only occur if there a state with energy Eractually exists. It is customary to inject

information about the availability of final states into Fermi’s Golden Rule using the quantity p(E,) = the
density of final states = #states per unit energy. This quantity has units of 1/energy. The energy-conserving
delta function 0(Er— E;) in our earlier version of Fermi’s Golden Rule also has units of 1/energy. To get the
most familiar form of F.G.R., we simply replace the one-final-state-only d-function with the density of states:
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