
Phys 487 Discussion 11 – Fermi’s Golden Rule 

Given    ● , ●  = the eigen-* of ● initial state 

then     with  

& to 1st order in ,           →   

Problem 1 : Fermi’s Golden Rule for a constant perturbation

In class, we derived Fermi’s Golden Rule for a perturbation that oscillates sinusoidally with time (typically in 
the form of EM radiation) and that is ON for a very long time.  As it happens, Fermi’s Golden Rule also applies 
for another extremely common type of perturbation: a potential that is constant with time, it merely turns on 
and off.  An example: a simple Stark and/or Zeeman effect experiment when a field �  and/or �  is turned 
on at some time t = 0 and turned off later.  So off we go! 

The simplest time-dependent perturbation is a constant potential V that just “turns on” at some time t = 0 : 

V(t) = 0 for t < 0         &     V(t) = V = constant for t ≥ 0. 

Important: we are NOT saying that V is constant versus POSITION, only with respect to time.  In all of our 
time-dependent PT work, it is implied that the perturbation labelled “V” or “H′” DOES in general have some � -
dependence, it will just end up in a transition matrix element Vfi = < ψf | V | ψi > that we will have to calculate 
(as an integral over position) if we want a specific answer for a specific V.  If we ever need to specify a potential 
that is independent of position, we will call it something like “V0” to denote one single scalar value. 

Now suppose we have a system with a solvable unperturbed Hamiltonian H0 plus the on/off perturbation V(t) 
given above.  What is the transition probability  = | cf (t) | ² to first order?  

(a)  Derive the following result : �  for i ≠ f.  

You will need the “half-angle formula” � .

▶ Is your first thought that the result is a typo?  It is always my first thought when seeing that expression for a 
simple time-independent perturbation that just turns ON once and OFF once!  “We saw that sin²(ωt/2) stuff 
when we worked with sinusoidal perturbations in class, surely it is just a copy/paste error?”  Indeed one would 
think that such a term only appears for sinusoidal perturbations, but no!  Start your calculation from time-
dependent PT basics (back to the formula sheet!), and observe how that same time-dependent term arises even 
for our much simpler ON/OFF perturbation.  (Actually, look closely: is Pi→f the same or just similar to the 
sinusoidal case?)

(b)  Prove the following weird but important Dirac delta-function relation : � .    

▶  Remember that the defining properties of the Dirac delta are on your 486 formula sheet, consult those to 
derive/prove the above relation, and the one in the next part. 

(c)  Prove that the following is a delta function : � .   (You will need � .) 
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(d)  Combining the above, show that the transition rate  �   in the limit where 
energy is conserved, i.e. where � .   

      This relation is one form of Fermi's Golden Rule for energy-conserving transitions.  

(e)  Is it reasonable to insist that energy is conserved despite the change in potential energy?  Return to 
expression (a) and consider its dependence on � .  As you can quickly check with some sort of 
machine, the function �  is peaked at x=0 and has a width of about π.   (It reaches 0.4 ≈ ½ at x = ±π/2).  
Given this info, what range of ωfi values keeps the transition probability Pi→f within a factor of about 2 of its 
maximum value?  Your answer will involve time, t.  Does the range of probable transition frequencies increase 
or decrease with t? 

(f)  Hopefully what you found was that, as t → ∞,  the width in reasonably-probable transition frequencies goes 
to zero.  This is a very important result!  What does t represent, exactly?  Once you know, you can say 
something like this 

“In the limit that the perturbation V(t) ____(words)____, the only transition frequency with 
  any finite probability is ωfi = ____, which means that energy is _____ in this limit.”

We have thus clarified the conditions under which part (d) is a valid result.   

(g)  You just found that energy is conserved more exactly in the transition from state i to state f as the time t 
that the perturbation has been ON increases.  What relation involving a German name is this related to? 

(h)  The perturbation can never be on forever, i.e. we can never reach the limit t → ∞, so there is always some 
non-zero range of final-state energies Ef ≈ Ei that can be reached from an initial-state energy Ei … but a 
transition Ei → Ef can only occur if there a state with energy Ef actually exists.  It is customary to inject 
information about the availability of final states into Fermi’s Golden Rule using the quantity �  = the 
density of final states = #states per unit energy.  This quantity has units of 1/energy.  The energy-conserving 
delta function δ(Ef – Ei) in our earlier version of Fermi’s Golden Rule also has units of 1/energy.  To get the 
most familiar form of F.G.R., we simply replace the one-final-state-only δ-function with the density of states:
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