
Phys 487 Discussion 13 – Spontaneous Emission 

Here is Fermi’s Golden Rule :  �   transitions per unit time from state i to state f .

We applied this to electric dipole E1 radiation : an oscillating potential energy �  caused 
by an approximately-uniform electric field � , which gives � .  We calculated the ingredients of 
Fermi’s golden rule for E1 radiation incident on an electron and found : 

●  Vfi ≠ 0 only when the selection rules at right are satisfied

●  �   for incoherent 

radiation, i.e. random direction & polarization 

●  �  = # of available (possible) photon states

of frequency ω per unit energy 

(We were TWO MINUTES away from deriving that last one in 
class, you’ll get an email when the conclusion recording is posted!)  Let’s plug these two ingredients into F.G.R.
and set | ω | = | ωfi | ≣ | Ei – Ef | / ℏ to satisfy energy conservation for the absorption/emission of a photon of 
energy ℏω,  Ei – Ef = ±ℏω.  We then  obtain the following transition rate, which is so hugely important it gets a 
special name :

  = Einstein’s A coefficient where ωfi ≣ ( Ei – Ef ) / ℏ 

This “A” is the number of transitions / second of spontaneous emission of E1 radiation from an atom in state i 
going to state f.  IT REALLY SHOULD BE LABELLED Ai→f.  We’ll call it Ai→f whenever it improves clarity.

Since “A” is the rate of spontaneous transition from a state i to a state f, it is precisely related to the natural 
lifetime τ of state i, i.e. how long it will remain in state i before dropping down to state f.  The relationship is : 

�   = lifetime of state i = time for the # of atoms in state i to drop by factor 1/e   

To be exact, this lovely relation is for the lifetime of state i under the transition i → f for a specific final state f 
(since “A” refers to both a specific initial state and a specific final state).  Usually, for a given initial state i there 
is a very dominant transition i → f that is much more probably (higher rate) than all the others, but if there are 
several final states to which state i can decay, the lifetimes add as follows : 

�   i.e. the rates �  add, not the lifetimes, which makes total sense. ☺

All details of the above (why is A the spontaneous transition rate?  why is 1/A the time it takes for a sample to 
drop to 1/e?  how is this derivation related to the stat-mech/thermo one in Griffiths? other questions you text 
me?)  will be discussed in the upcoming E1-radiation-wrapup recording. 
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Figure 14.3 Energywise ordering of the terms for the configuration np np.

Selection Rules for Electron Transitions in LS Coupling
Assuming that only one electron makes a transition at a time, the selection rules
for the transitions between LS coupled states are:

For the electron making the transition
(a) Dl = ±1 (14.15)
(b) Dml = 0, ±1

For the atom as a whole
(a) DS = 0
(b) DL = 0, ±1 (L = 0 ´ L¢ = 0 forbidden)
(c) DML = 0, ±1 (14.16)
(d) DJ = 0, ±1 (J = 0 ´ J ¢ = 0 forbidden)
(e) DMJ = 0, ±1

jj Coupling
In heavy elements the spin-orbit interaction in individual electrons becomes large
and dominates over the residual electrostatic interaction between electrons.
Therefore, the Li and Si vectors of individual electrons couple to give resultant
Ji vectors. These individual Ji vectors then combine to give a resultant J vector
of the whole atom. This is called the jj coupling scheme:
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Problem 1 : Reduced Mass Griffiths 5.2

In classical mechanics, two bodies with masses m1 & m2 with a central force between them can be treated as 
ONE EFFECTIVE body with the reduced mass μ = m1m2/(m1+m2).  (Griffiths problem 5.1 goes through the 
demonstration that this simplification carries over directly to quantum mechanics, if you would like to work 
through it; you will see that the Schrödinger equation simplifies exactly as Lagrange’s equations did in CM, not 
too surprising.)  We can use this concept to correct for the motion of the nucleus in hydrogen : we simply 
replace the electron mass with the reduced mass for the (electron + proton) system.

(a) Find (to two significant digits) the percent error in the binding energy of hydrogen introduced by our use of 
m instead of μ.  

(b)  Find the separation in wavelength between the red “Balmer” lines (n=3 → n=2) for hydrogen & deuterium.

(c)  Suppose you wanted to confirm the existence of muonic hydrogen, in which the electron is replaced by a 
muon (same charge, same spin, but 207 times heavier).  At what wavelength would you look for the “Lyman-α” 
line (n=2 → n=1)? 

Problem 2 : Positronium part of a Qual Problem

Positronium is a hydrogen-like bound state made up of an electron and a positron.  

(a)  Estimate the binding energy of the ground state (n = 1) and the Lyman-α (2p → 1s) transition wavelength 
for positronium.  HINT: Problem 1 is highly useful here!

(b)  The lifetime for the decay from 2p to 1s for the hydrogen atom is 1.6 ns.  Estimate the lifetime for the same 
decay in positronium.

Problem 3 : Various Elements Qual Problem

(a)  List the ground-state electronic configurations and the L, S, and J quantum numbers for the following 
atoms:  Li (Z=3), B (Z=5), N (Z=7), Na (Z=11), K (Z=19).  HINT: It is implied that you should specify 2S+1LJ 
for the ground states of these atoms.  (There is no other way to interpret the question that would give a unique 
answer for each atom!) 

(b)  The lowest frequency line in the absorption spectrum of Na is a doublet.  What mechanism splits the 
corresponding pair of energy levels?  The splitting between levels is proportional to < rn > where r is the 
distance of the valence electron from the nucleus.  What is the numerical value of n?  HINT: You can only 
figure out n once you know the mechanism.  You may have to hunt through notes / Griffiths / web to find the 
formula you need for n, it is not on our formula sheet directly, but I bet you can figure it out on your own! 

(c)  Consider potassium (Z=19).  Make a level diagram indicating the three lowest-lying states 2S+1LJ in energy 
order.  (Check your result against the NIST database!)  Then consider the effect of adding a weak magnetic field 
B; this will further split the levels → how?  (HINT: you will get a new level diagram with MJ now specified as 
well; it should have 8 levels in total).

(d)  On your 8-level diagram, indicate all the allowed transitions.  
HINT: you should find 10 allowed transitions, where as you know, “allowed” is code for “E1 transitions”.) 


