
Phys 487 Discussion 15 – The 2 Standard Scattering Techniques of NRQM 
Recap from last discussion: All of our scattering problems rest on the assumption that the scattering potential is 
central (V(r)) and falls off fast enough with r that the wavefunction in the asymptotic r → ∞ region can be 
treated as that of a free particle.  We thus write the total wavefunction of the incoming + outgoing particle as

�    with   � .

The given quantities are the reduced mass �  of the [ beam + target ] system and the kinetic energy E of the 
[ beam + target ] in the center-of-mass frame.  Last week you analyzed the flow of probability represented by 
the above terms to derived the relation between the scattering amplitude f(θ) and the differential xsec : 

�

Today we derived the two standard ways of determining f(θ) in NRQM (Non-Relativistic Quantum Mech): the 
Born approximation and scattering phase shifts. 

Method 1 : The Born Approximation 

Using Fermi’s Golden Rule from 1st-order perturbation theory, we derived this method of calculating the xsec: 

� where �  = momentum transfer from beam to target, and

� is the Fourier transform of the potential V(r) created by the target. 

This method is applicable when the potential �  is << the system’s kinetic energy.  

Problem 1 : The Born Approximation takes on two delta functions Qual Problem, of course 1

A free particle of mass m, travelling with momentum p parallel to the z-axis, scatters off the potential 

� .

(a)  Calculate the differential scattering cross section, dσ/dΩ, in the Born approximation.  

▶ GUIDANCE #1: Clearly you calculate the Fourier transform of the potential, � , then 

get � ,  and finally get � .  The steps are obvious at least.  :-) 

One point that requires thought is that your V(q) will end up with “ � ” in a couple of places , and that needs to 
be expressed in terms of the scattering angle θ.  The definition of the scattering angle is important here : it is the 
angle between the beam-particle direction �  and the scattered-particle direction � .  The question tells us that 

the beam is aligned with the z axis, i.e. � . 
▶ GUIDANCE #2: The magnitudes of �  and �  also need a little thought.  This is elastic scattering: there is 
nowhere for any energy to go, and we are working in the CM frame (via the use of the reduced mass in our 
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equations).  If you think through that sentence, you will see that the magnitudes of the incoming and outgoing 
momenta must be the same : ki = kf.  This will be true in ≈ every NRQM scattering problem you encounter.

Method 2 : S-Wave Phase Shifts

● Key Concept #1: Here again is our master expression for an (incoming + scattered)-particle wavefunction in 
the free, asymptotic r → ∞ region: 

�

As we learned in class, we can rewrite this expression as a sum over partial waves, which are solutions 
Rl(r)Yl0(θ) of the free-particle Schrödinger Equ for a specific l value : 

  for some coefficients Al. 

(Where did the Legendre polynomials come from? → We are only considering cases that are φ-independent, so 
the only spherical harmonics we keep are those with m=0, and the Yl0(θ) are all proportional to Pl(cosθ).)  
The �  up there is the first heart of our strategy : each individual partial wave �  is the sum of an 
incoming spherical wave and an outgoing spherical wave of the same amplitude that is merely phase-shifted by 
an amount δl to account for the effect of the scattering potential V(r).  Besides this phase-shift concept, you 
need one formula from the full phase-shift analysis: by matching the previous two expressions to each other 
(which is actually just algebra) you get the scattering amplitude f(θ) as a sum over Legendre polynomials, one 
for each partial wave : 

�

Since dσ/dΩ = | f(θ) | ²,  find the phase shifts { δl } for the partial waves and you have found your xsec. 

● Key Concept #2: When low-energy particles scatter from short-range potentials V(r), only particles of low 
angular momentum will even encounter the potential and be scattered.  Let the range of such a potential be a.  
To feel any effect at all from this potential, a beam particle must have impact parameter b ≤ a.  The angular 
momentum of the beam relative to the origin is L = � = bp.  To be scattered at all, the beam must 
have

�    where a is the range of the potential doing the scattering,

   ∴ �   since k=p/ℏ, as always.

It is quite common with low-energy beams and short-range potentials that only the s-wave (l=0) is scattered.  
In such cases, we have only one partial wave to phase-shift.  With only one, we can do everything by hand.   
With only the l=0 partial wave contributing to the scattering amplitude f(θ), the boxed formula above collapses 
to the only formula we actually need in this section:  

�   for s-wave scattering.

There you go: for low-energy scattering, find the s-wave phase shift δ0 and you have your cross-section. 
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Problem 2 : S-Wave Phase Shifts take on an attractive shell Qual Problems R Us 2

Consider a particle of mass m that scatters in three dimensions from a potential

�  

where C and a are positive constants.  (This represents an attractive contact potential that occupies a thin 
spherical shell of radius a.  Like a round eggshell covered with superglue.  Weird.)  

Derive the exact s-wave expression for the total scattering cross section in the limit of very low particle energy. 

This is the first time we are doing one of these, so let’s write down some steps.  We have no convenient formula 
for figuring out phase shifts.  What we must do is implement the phase shift idea by hand for the one case l=0 
(the “s-wave”).  

(STEP a)  Figure out the form of the radial wavefunction R(r) for the case l=0 and the potential given in the 
question in the two regions relevant to this problem : r > a and r < a.  In other words, go back to 486 basics, 
literally: obtain the radial Schrödinger equation for this potential, set l = 0, and write down the general solutions 
for the regions 0 < r < a (“interior”) and r > a (“exterior”).  Remember that, with radial equations, it is almost 
always way easier to work with u(r) ≡ r R(r) than with R(r) itself.  (By all means, go through notes or textbook 
to find the radial Schrödinger equation.)  

(STEP b)  We will have to apply boundary conditions to uINT and uEXT.  Step-by-step … first, consider the 
point r=0 → always an important point to consider in spherical coordinates!  Remember that you need  
R(r) = u(r) / r = the real wavefunction to be well-behaved at the origin.  Does that limit your choices from (a)? 

(STEP c)  Now we apply the phase shift idea: The entire effect of the potential = the sticky-eggshell δ-function 
potential at r = a is to simply insert a phase shift of δ between the free wavefunctions on either side of the non-
free region r = a.  Adjust your uINT and uEXT solutions if necessary to accomplish that.  Remember that this 
phase-shift concept is that for each partial wave independently — i.e. for each l independently (here we only 
have one, l=0) —  the flux of probability into a region with non-zero potential is equal to the flux of probability 
out of the region of non-zero potential, because there is nothing in a central-potential problem that can move 
probability from one l-state to a different l-state.  

(STEP d)  Now apply standard boundary conditions at r=a.  Totally a 486 thing!  
Hint 1: This requires a glance at the 486 formula sheet because of the δ function at r=a.  
Hint 2: You will find it useful to introduce the symbol � .  
Hint 3: You will get a transcendental equation that you can’t solve just yet, and that’s ok. 

(STEP e)  We hit a transcendental equation, what futher approximations can we make? … AH, the question said 
to derive the s-wave total cross section in the limit of very low particle energy.  Low energy means low 
momentum, so take the approximation k ≈ 0 wherever you can (without losing k entirely of course!)   Apply that 
limit to get an expression for the phase shift δ in terms of the given quantities k, γ, and a.  

(STEP f)  We have our phase shift, what do we do with it?  We get the cross-section!  Apply the last boxed 
formula above to get dσ/dΩ, then integrate it over angles to get the total cross-section σ. 

V (r) = −C δ r − a( )

γ ≡ 2mC / !2

 Q2 (a) uINT(r) = A sin(kr + α) ; uEXT(r) = B sin(kr + β) where A, B, α, β are the free parameters that are always present in the general2

   solutions of 2nd-order ODEs!  (b)  RINT(r) = uINT(r)/r = A sin(kr+α)/r → non-infinite as r → 0 as long as α=0.  ∴ uINT(r) = A sin(kr).
    (c)  uINT(r) = A sin(kr) ; uEXT(r) = B sin(kr + δ)  (d) boundary conditions give tan(ka+δ) = tan(ka) / [ 1 – (γ/k) tan(ka) ]
    (e)  δ ≈ k γ a² / (1–γa) << 1 for very small k   (f)  dσ/dΩ = sin²δ / k² ≈ δ² / k² = constant so σ = 4π dσ/dΩ ≈ 4π γ² a4 / (1–γa)²


