
Physics 487 – Homework #5 due @ (t, x) = ( Monday 10/7 noon , 487 homework box ) 

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: our 
master rule for homework and exams is NO WORK = NO POINTS.  However, unless otherwise specified, you 
may use any relation from the formula sheets on our website, from the introductions to this or previous 
homework / discussions, or from non-QM courses without proof.  Here’s a rule of thumb: Write enough 
so that it will MAKE SENSE TO YOU IN 5 YEARS, i.e. so that it provides you with useful future notes.  
Finally please write your NAME and DISCUSSION SECTION on your solutions. ☺

You may use anything from the formula sheets on our web site without derivation
… but do try to see how far you can get on your own on your personal Desert Island. ☺ 

You may also use wolframalpha.com or similar tool to evaluate your integrals 
after you set the up in a form that can be directly entered into such tools.

Here are the perturbation theory (time-independent, non-degenerate) results we have proved or will prove in 
lecture.  If you have 

• a “zeroth-order” Hamiltonian H0 that has exact eigenvalues  and eigenstates , 
• an actual Hamiltonian   where  is a small correction to H0 (a “perturbation”, ),
• a series expansion of H eigenvalues: �  for each n where �
• & a series expansion of H eigenstates: �  for each n, where �

then as long as 
• the Hamiltonian �  has no explicit time-dependence and 
• the exact eigenstates �  are non-degenerate,

the 1st-order and 2nd-order corrections to each unperturbed energy En / unperturbed eigenstate  are: 

 = the expectation value of the perturbation H′ in the nth exact state.

�     and    �    so �

Problem 1 : Two Identical Bosons in ∞ Well, with a weak interaction between them Griffiths 6.3

Two identical bosons are placed in an infinite square well with V = 0 from x = 0 to x = a, and V = ∞ everywhere 
else.  The bosons interact weakly with one another, via the potential

�

where V0 is a constant with dimensions of energy.  As you can see, this potential describes an attractive 
“contact interaction”, i.e. one that is so short-range that it only acts when the particles are at the same place. 

(a)  First, ignoring the interaction VINT between the particles, find the ground state and the first excited state — 
both the wave functions and the associated energies.  (This is our standard Sandbox system — the easiest QM 
system to play with — so by all means just write down what the single-particle wavefunctions without any/
much derivation.) 
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(b)  Use first-order perturbation theory to estimate the effect of the particle-particle interaction above on the 
energies of the ground state and the first excited state. 

Problem 2 : δ-Function Bump in the ∞ Square Well ™ adapted from Griffiths 6.1 & 6.4(a)

Suppose we put a δ-function bump in the center of an infinite square well that runs from x = 0 to x = a.  
The bump adds the following term to the Hamiltonian : 

�   where α is a constant.  

You can use without proof any results for the unperturbed InfiniteWell™ as you have worked with it so much.

(a)  Find the first-order energy corrections �  caused by the bump.  Hint: you should find that the bump has a 
very different effect on the energy for even and odd values of n.  

(b)  Now let’s calculate the first-order modifications that the bump produces in the energy eigenstates rather than 
the energy eigenvalues.  The energy eigenstates of the unperturbed ∞ well are � .   First-order perturbation
theory provides a correction �  for each unperturbed state � , given as a sum over contributions from the 
other unperturbed states � .  Calculate the first three non-zero terms in this sum for the ground state (n = 1).  

(c)  Calculate the second-order energy corrections �  caused by the bump.  You will obtain an infinite sum 
that you can actually do, which is rather wondrous.  The main trick is to use

�

to rewrite the sum you have to do.  If you write out explicitly (in actual numbers) the first few terms in the 
resulting series, you will see what happens.  It will be very pleasing. ☺  
Also, hints from the Sunday crew: (1) Don’t confuse your summation index “m” with mass, and (2) remember 
that you are summing over m, while n is a fixed value that will appear in the final result for � .  

Problem 3: Spherical Harmonic Oscillator + Spin-Orbit Interaction Qual Problem

Consider a spinless particle in a spherically-symmetric harmonic oscillator potential : the Hamiltonian is

�    where m and ω are known constants.

Last semester you used separation of variables in spherical coordinates, in the form 

�  

that always works for a central potential V(r), to find the radial equation for R(r).  You used the asymptotic-
behaviour × Frobenius–series method to obtain a recursion relation and quantization condition for the 
eigenstates Rnl(r).  It was SUPER FUN!  IF you need any of that, you’ll have to derive it again! (*^ - ^*)

(a)  Find the energies and degeneracies of the lowest-lying s-shell state(s) and the lowest-lying p-shell state(s) of 
the 3D SHO.  

▶ Hint: One possible way to proceed is to convert the problem to Cartesian coordinates and use some things 
from the file Formulae-SHO-reference.pdf ... BUT: If you switch from (r,θ,φ) to (x,y,z), you lose the explicit 
connection to angular momentum and the quantum numbers of your states won’t be (n, l, ml) but (something 
else).  When you find the lowest-lying states, you must make some argument to convince yourself that they 
should be identified with the “s-shell” and “p-shell” states mentioned in the question.  An argument involving 
the degeneracies of the Cartesian states that you found would do the trick, for example.   
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(b)  Suppose the particle in the SHO is an electron.  Let’s add to the Hamiltonian a spin-orbit interaction term,

�        where       �

NOTE: This formula previously had an �  in the numerator.  Reason: I grabbed it from a textbook with a 
different definition of the operators L and S.  In different textbooks, you will find L and S defined both with and 
without an implicit �  included, i.e. both with and without units.  We & Griffiths are consistently using the 
convention that the operators L and S have units of angular momentum (so the eigenvalues of L² and S² are
�  and �  respectively, with � ’s included). 

Use perturbation theory to estimate how the SHO’s lowest two energy eigenvalues are altered by the addition of 
the (small) spin-orbit interaction.  

(c)  Hmm, the above form for the spin-orbit potential energy isn’t the same as the one in Griffiths §6.3.2 [6.61] :

� .

This Griffiths formula is the special-case result for an electron in a hydrogen atom; the more general formula 

�

works for an electron moving in any central potential V(r) of electrostatic origin.  We didn’t derive VS-O in 
class, so here’s a chance to do it.  Griffiths starts with the classical magnetic field seen at the center of a current 
loop.  That works great for an electron in an atom, which sees the nucleus orbiting around it.  To derive the 
more general formula in the box, instead with the conceptual origin of the spin-orbit interaction,

�

and this relation from special relativity, 

� , 

which gives the magnetic field seen by a particle of speed �  moving through an electric field � .  After the first 
couple of steps, the derivation matches the atom-specific one in Griffiths §6.3.2, by all means follow along!
WARNING: Near the start of your derivation, you must obtain �  from the central potential V(r) that describes 
it, but watch out → in E&M, V means “voltage” while in QM and Lagrangian CM, V means “potential energy”!

Problem 4: A Spin-Spin Interaction in Matrix Form

An interaction between two spin-½ particles is given by 

�    
where a and b are constants.  Just as a quick reminder of how what the Pauli matrices mean, the total spin of 

the two particles is � .  

(a)  Derive the matrix representation for V in the basis �  where the ordered basis states are 
�

(b)  Derive the matrix representation for V in the basis �  where the ordered basis states are 
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Here, the up and down arrows are convenient shorthand for +½ and –½ .  
▶ HINT: There are two ways to solve this problem, one involving all the Pauli matrices, and the other involving 
Clebsch-Gordan coefficients & some of your work from part (a).   
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