
Physics 487 – Homework #6 hard deadline Friday 10/18 5pm 

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: our 
master rule for homework and exams is NO WORK = NO POINTS.  However, unless otherwise specified, you 
may use any relation from the formula sheets on our website, from the introductions to this or previous 
homework / discussions, or from non-QM courses without proof.  Here’s a rule of thumb: Write enough 
so that it will MAKE SENSE TO YOU IN 5 YEARS, i.e. so that it provides you with useful future notes.  
Finally please write your NAME and DISCUSSION SECTION on your solutions. ☺

You may also use wolframalpha.com or similar tool to evaluate your integrals 
after you set the up in a form that can be directly entered into such tools.

Reading for Week 7 : Griffiths Ch. 7 & Ch 8.1-2 

Problem 1 : Qual Time! A Second-Order Perturbation Theory Problem last problem of Discussion 6

A particle moves in a 3D SHO with potential energy V(r).  A weak perturbation δV(x,y,z) is applied:  

and  

where U is a small parameter.  Use perturbation theory to calculate the change in the ground state energy to 
order O(U2).  Use without proof all the results you like from the 1D SHO → see supplementary file on website.

▶ Hint 1: The energy eigenstates of the 1D SHO™ in our reference file, or in any other sane tabulation, are 
orthonormal.  

▶ Hint 2: Notice that the nth Hermite polynomial, Hn(x), is a polynomial of order n.  If you multiply it by x, you 
turn it into a polynomial of order n+1 … which you can write as a linear combination of Hn+1(x) and Hn–1(x).  
This relation is particularly simple for the ground state.  :-)

Problem 2 : The Van der Walls Force — Important for Chemistry! adapted from Griffiths 6.31

Consider two atoms a distance R apart.  Because they are electrically neutral you might suppose there would be 
no force between them, but if they are polarizable, there is in fact a weak attraction.  To model this system, 
picture each atom as an electron (mass m, charge –e) attached by a spring (spring constant k) to the nucleus 
(charge +e) as in the figure below : 

We’ll assume the nuclei are heavy, and essentially motionless.  The Hamiltonian for the unperturbed system is

�

The Coulomb interaction between the atoms is 
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 (a) Explain the form of H′ in words.  Then, assuming that �  and �  are both much less than R, show that

�

(b)  Show that the total Hamiltonian H = H0 + H′ separates in to two harmonic oscillator Hamiltonians :

�

under the change of variables

� ,  which entails � .

(c)  The ground state energy for this Hamiltonian is evidently

� ,  where � .

Without the Coulomb interaction, it would have been � , where � .  Assuming that 
� ,  show that 

� .

Conclusion:  There is an attractive potential between the atoms, proportional to the inverse sixth power of 
their separation.. This is the van der Waals interaction between two neutral atoms.

(d)  Now do the same calculation by applying second-order perturbation theory to the original H0 from the 
introduction and the approximate H′ from part (a).  Hint: The unperturbed states are of the form ψn1(x1) ψn2(x2), 
where ψn(x) is a one-particle oscillator wave function with mass m and sprint constant k; ΔV is the second-
order correction to the ground state energy, for the perturbation H′ in part (a) (notice that the first-order 
correction is zero.) 

▶ my hint: Remember that the eigenstates of energy of the 1D SHO™ (as tabulated on one of our formula 
sheets for your convenience) are all orthonormal.  The integral(s) you have to do can be performed using this 
fact : The nth Hermite polynomial, Hn(x), is a polynomial of order n.  If you multiply it by x, you turn it into a 
polynomial of order n+1 … which you can write as a linear combination of Hn+1(x) and Hn–1(x).  :-) 

Problem 3 : The Stark Effect Griffiths 6.36

When an atom is placed in a uniform external electric field Eext, the energy levels are shifted — a phenomenon 
known as the Stark effect.  In this problem we analyze the Stark effect for the n = 1 and n = 2 states of 
hydrogen.  Let the field point in the z direction, so the potential energy of the electron is

�

Treat this as a perturbation on the simple “Bohr” Hamiltonian for the hydrogen atom,  
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Spin is irrelevant to this problem so ignore it.  

(a)  Show that the ground state energy is not affected by this perturbation, to first order.

(b)  The first excited state is 4-fold degenerate: ψ200, ψ211, ψ210, ψ21–1.  Using degenerate perturbation theory, 
determine the first-order corrections to the energy.  Into how many levels does E2 split? 

(c)  What are the “β” wave functions for part (b), i.e. the ones that diagonalize the perturbation � ?  (Griffiths 
calls these “good” wavefunctions.)  Find the expectation value of the electric dipole moment ( � ) in each 
of these “good” states.  Notice that the results are independent of the applied field — evidently hydrogen in its 
first excited state can carry a permanent electric dipole moment. 

HINT: There are a lot of integrals in this problem, but almost all of them are ZERO.  So study each one 
carefully, before you do any calculations!  For example, if the φ integral vanishes, there’s not much point in 
doing the r and θ integrals!  Partial answer:  where a0 is the Bohr radius as usual; 
all other elements of �  are zero ☺.
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