
            Physics 487 – Homework #4	 due Friday Sep 25 @ midnight: 1 file → my.physics Course Uploads

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: our 
master rule for homework and exams is NO WORK = NO POINTS.  However, unless otherwise specified, you 
may use any relation from the formula sheets on our website without proof.  GUIDANCE: Write enough so 
that it will make sense to YOU in five years, i.e. so that it provides you with useful future notes.  Finally please 
write your NAME and DISCUSSION SECTION on your solutions. ☺ 

You may always use anything from the formula sheets on our web site without derivation.
For this homework, you may also use wolframalpha.com , wolframcloud.com, 

or any similar tool to evaluate your integrals 
after you set the up in a form that can be directly entered into such tools.

Reading for week 5 : Griffiths §6.1 and 6.2

                                           Problem 1 : Full Wavefunction = ψ(Space) × χ(Spin) 	 adapted from Griffiths 4.55 

The electron in a hydrogen atom is in the following state : 
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where the basis states for the spinors are, as usual, 

	 	 χ+ ≡ χ ms = +1/2( ) ≡
1
0

⎛
⎝⎜

⎞
⎠⎟

 and χ– ≡ χ ms = −1/2( ) ≡
0
1

⎛
⎝⎜

⎞
⎠⎟

 , 

(a)  If you measured L2, what values might you get, and what is the probability of each? 

(b)  same question for Lz 	 	 (c)  same question for S2 	 	 (d)  same question for Sz 

(e)  same question for J2 where  
!
J ≡
!
L +
!
S 	 	 	 	 	 (f)  same question for Jz 

(g)  If you measured the position of the electron, what is the probability density for finding it at (r, θ, φ) ?  

(h)  If you measured both the z component of the spin and the distance from the origin (note that these are 
compatible1 observables), what is the probability density for finding the electron with spin up at radius r ? 

                                                        Problem 2 : Helium Ground State Energy	 (b) adapted from Griffiths 5.11

(a)  The helium atom consists of two electrons bound by a doubly-charged nucleus.  The most crude 
approximation you can make to its Hamiltonian is the sum of two hydrogen-like Hamiltonians, i.e. one for each 
of the two electrons, treating them as if they are interacting with just the Z (nuclear charge) = 2 nucleus and not 
at all with each other (also no spin-orbit interaction or other corrections to the Bohr model).  Making use of the 
hydrogenic energy eigenstates and eigenvalues, 

1 Jargon check: Two observables A and B are compatible if they commute … which means that they share a common set of 
eigenstates … which means that if you measure A, thereby placing the system in some eigenstate |a〉 of A, the state |a〉 will also be an 
eigenstate of B — let’s call it | a; b 〉 — so you can go ahead and measure B and obtain the value b without further disturbing the state!  
You won’t change the value of A when you measure B, hence A & B are “compatible observables”.  (There is a small subtlety 
involving degenerate states, but it’s not much of an issue: “b” can be a set of degenerate eigenvalues of B, that’s all; you still won’t 
disturb the eigenvalue a when measuring B.)  
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from our 486 formula sheet, calculate the energy of the helium ground state in the approximation that Helium ≈ 
two non-interacting electrons sitting in the field of a Z=2 nucleus.  Express your result in eV.  

(b)  The measured energy of the helium ground state is –79 eV, so the non-interacting-particle approximation is 
not very accurate (almost 40% tighter binding than –79 eV).  Almost all of the discrepancy with experiment can 
be accounted for by adding the electron-electron repulsion term, Vee, to the Hamiltonian.  Calculate the 
expectation value Vee  of this interaction for the helium ground state.  After you apply Vee  correction, you 
should be about 5% away from the experimental ground state energy instead of 40% → as we said during our 
discussion of the Hund rules, Vee is the dominant correction to the Bohr model for multi-electron atoms.

▶ INTEGRATION GUIDANCE:  Calculating Vee  requires calculating  1/
!r1 −
!r2 .  See Griffiths problem 

5.11(a) for assistance on how to set up this multi-dimensional integral.  Also see Saavanth Velury’s excellent 
writeup on Feynman’s Trick for integration!  

Problem 3 : The Fourth Row

The electronic configurations of the first four elements in the fourth row of the periodic table are in the box :

▶  Recall from chemistry: The word valence comes from the Latin word for “power”.  A valence electron is 
“an electron available for chemical bonding”, i.e. an electron in a partly-filled shell.  The noble gases He, Ne, 
Ar, … have no valence electrons, and so are tightly-bound systems that hardly interact with other atoms.  
To simplify electronic configurations, it is common to lump together all the chemically-inactive electrons from 
the nearest noble gas into a single symbol, as you see in the box above.  Expanded out, the e– configuration for 
potassium is 1s2 2s2 2p6 3s2 3p6 4s1 ; it’s much simpler to absorb all those filled shells into one symbol: [Ar] 4s1. 

(a)  Consider potassium (K).  Its ground state is 2S1/2  = the “doublet-S-½”.  Explain briefly why this is the only 
possible ground state given that the ground state electron configuration is K = [Ar] 4s1.

(b)  As you see from the box, scandium (Sc) has only one valence electron.  First, list all possible  
2S+1LJ  states 

given that the valence electron is in the d-shell.  Then decide which of your states has the lowest energy and 
explain your decision qualitatively (no calculation needed). 

(c)  Titanium (Ti) has two valence electrons, as you can see from its electron configuration in the box above.  
As it happens, the ground state of Ti has total orbital angular momentum quantum number L = 3.  Let’s align a 
ground-state Ti atom so that its ML quantum number is –1.  Ignoring spin entirely, express this state, 3, –1 LM , 
as a superposition of states m1m2  using Clebsch-Gordan tables.  
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(d)  The ground state of Ti is the “triplet-F-2” state, 3F2.  Explain the triplet part: why does the system reach its 
lowest energy when its total spin is 1?  Please explain more deeply than simply quoting one of the Hund rules, 
you need to explain the reason behind that Hund rule. 

(e)  What is your favourite element?  


