

Caption To Example Figure

Figure 1: Signatures of Supercooling in Classic Glass-forming Fluids

- A. Under suitable conditions, a liquid can be cooled through the melting temperature T_m without crystallizing and instead reaches a supercooled liquid state. With further cooling, the heat capacity of the supercooled liquid must eventually decrease from the higher liquid value toward the lower crystalline value; this is necessary for the entropy to remain non-negative at very low temperatures. Supercooled liquids therefore typically have a broad peak in their heat capacity below T_m and a little above the glass transition temperature T_m .
- B. In a classic supercooled liquid, diverging microscopic relaxation times $\tau_0(T)$ typically do not follow Arrhenius behavior (dashed line) but instead follow the Vogel-Tammann-Fulcher (VTF) evolution (blue curve; Eqn. 1). Here T_0 is a temperature at which the relaxation time diverges to ∞ while D characterizes the extent of the super-Arrhenius behavior. By convention, a classic glass is said to form when $\tau_0 > 100s$.
- C. $Re[\varepsilon(\omega,T)]$ and $Im[\varepsilon(\omega,T)]$ of the Havriliak-Negami form (Eqn. 2) of the dielectric function; these are both characteristic of supercooled liquids.
- D. Ultra-slow relaxation in glass-forming liquids occurs with a KWW form (green curve, Eqn. 3) instead of a Debye form (dashed line), as shown here for the dielectric function \(\epsilon(t)\).

Caption to Example Figure

Figure 2: Novel Experimental Techniques for Frustrated Magnetism in $Dy_2Ti_2O_7$

- A. The Dy³+ moments (black circles) in Dy₂Ti₂O7 are located on a lattice comprised of equilateral corner-sharing tetrahedra. The centers of tetrahedra themselves form a diamond lattice.
- B. An allowed magnetic ground-state configuration for two tetrahedra in Dy2T2iO7. Here the crystal field anisotropy causes the moments to point along their local [111] axes, thus forcing them to point toward or away from each tetrahedron center. To minimize magnetic energy, the spin configurations of a tetrahedron of Dy2T2iO7 satisfy the spin equivalent of the Bernal-Fowler 'ice rules', with each tetrahedron having two spins pointing toward its center and two spins pointing away from its center.
- C. Schematic of a pair of delocalized magnetic monopoles (+ green, red) representing a sequence of spin flips as shown.
- D. Schematic representation of the toroidal geometry of our Dy₂Ti₂O₇ sample (yellow) and the superconducting toroidal solenoid (blue). The cryogenic sample environment $30 \, \mathrm{mK} < \mathrm{T} < 4 \, \mathrm{K}$ is indicated by a dashed rectangle. DC current flow in the direction indicated by black arrow produces an azimuthal static magnetic field $B \phi$ (blue arrows). If a fluid of magnetic-monopoles of both signs exists, the net magnetization current $J \phi$ (red/green arrows) would be nonzero. Applied AC currents $I_0 Cos(\omega t)$ generate the azimuthal fields $H \phi Cos(\omega t)$ whose effect is simultaneously detected by measuring the EMF across the STS: $V(\omega,T)$. The dynamical magnetic susceptibility components are then derived from $V_x(\omega,T) = -I_0 \omega L \chi''$, $V_y(\omega,T) = -I_0 \omega L \chi'$, where L is the effective geometrical industance of the STS.

Explanatory Figure

- Gives overview, summary, or big picture
- Often schematic
- Not data or results
- Important to (over-) simplify without introducing errors
- Important to be visually attractive

A great resource:

Learn a software platform: Illustrator, CorelDraw, Powerpoint...

Example: Explanatory Figure

Coupling Identical

FIG. 1. Coupling identical MBL systems: A charge density wave (CDW) with atoms only occupying even sites (e) is prepared in each of the identically disordered 1D tubes along the Pranjal Bordia, 1,2 He longitudinal (x) direction, with hopping J, on-site interaction Michael Schreiber, 1,2 In energy U and disorder strength Δ . Red and blue spheres indicate a typical distribution of $\left|\uparrow\right\rangle$ and $\left|\downarrow\right\rangle$ atoms. We monitor at the time evolution of such a state for different inter-tube coupling strengths J_{\perp} , that is different hopping amplitudes along the transverse (y) direction.

Results (data) Figure

- Presents data, numerical results, theory curve
- Usually a graph
- Can encode a lot of information
 Be careful! Too much is deadly
- Important to label axes clearly and correctly
- Make sure points, lines, and error bars are visible and distinct

General Advice

- Legible fonts
 - Print the figure at 100% (reproduction scale)
 - Line thickness
- Avoid similar colors, yellow, orange
- Avoid arbitrary units
 - Use physical, standard units
- Explain every part of the figure in the caption
 - symbols, insets, what each part is about
- Include scale bars & color bars
- Use high resolution, high contrast images
- Use vector graphics when possible

Resources

Software for making professional-quality figures

Line / vector art

Illustrator, CorelDraw, Inkscape (free)

Mathematica

3D Illustration

SketchUp (free), VPython (free), Blender (free) Autodesk products (free for students)

More resources (Celia)

Edward R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative (Cheshire, CT, Graphics Press, 1997).

"Graphing Resources"
(http://www.ncsu.edu/labwrite/res/res-homepage.htm), particularly their "Revising your Visuals" section.

