

 $\ensuremath{\mathbb{C}}$ 2021 The Board of Trustees of the University of Illinois All rights reserved.

Conveying
Scientific
Information
Visually

Celia M. Elliott University of Illinois cmelliott@illinois.edu

With thanks to Brian DeMarco for Slides 7–13, many fruitful discussions, and excellent advice

I

1

Let's review the four reasons to use figures

- 1. Engage the audience and capture their interest
- 2. Provide supporting evidence
- 3. Help explain complex ideas and relationships quickly
- 4. Give the audience a visual, memorable "hook" to hang your key ideas on

PHENIX detector at the Relativistic Heavy Ion Collider Courtesy M. Grosse Perdekamp

Each figure should have a single "point"

Explanatory figures show concepts, things, and processes

250

Pseudogap

Source: Joel Holdsworth

Source: Laboratoire National des Champs Magnétiques Intenses - Toulouse

Source: ATLAS Experiment—CERN

Separation of the American Science of the Stewart | SLAC National Accelerator Laboratory

Explanatory figures show concepts, things, and processes

Gives overview, summary, or big picture

Often schematic

Not data or results

Important to (over-) simplify without introducing errors
Important to be visually interesting and attractive

Brian DeMarco recommends:

Learn a software platform: Illustrator, CorelDraw, Powerpoint...

5

Results figures show numerical data

Usually a graph

Can encode a lot of information

Brian DeMarco: Be careful! Too much is deadly

Axes must be labeled clearly and correctly Axes labels must show variable AND unit Use appropriate (and visible!) tick marks

Points, lines, error bars must be visible and distinct

Be cautious about using color to convey information

7

Great advice from Brian DeMarco:

Use legible (sans serif) fonts

Print the figure at reproduction scale

Pay attention to line thickness

Use color judiciously—avoid too-similar colors, pastels, red/green

Use physical, standard units; avoid arbitrary units

Include scale bars & color bars

Use high-resolution, high-contrast images

Use vector graphics when possible

More advice from the old copy editor:

Label all elements of a figure; show the audience what they're supposed to be looking at and what it is

Remove superfluous details—crop photos, use cutaway drawings instead of photos

Position figures so they are discussed in the text before they appear in the manuscript

Number figures in consecutive order in which they are discussed in the text

Every figure must have a caption (stay tuned...)

15

Worst figure I have ever seen...

Figure 1. SRQ Plots of T_i/T_n (Vertical Axes) Against i/n (Horizontal Axes) for the Gibbs Sampler (a) and an Alternating Gibbs/Independence Sampler (b) for the Pump Failure Data Based on Runs of Length 5,000. Lines through the origin with unit slope are shown dashed; axis ranges are from 0 to 1 for all axes.

Source: P. Mykland, L. Tierney, and B. Yu, "Regeneration in Markov Chain Samplers," J. Am. Statistical Assoc. 90, 233–241 (1995).

Origin (Webstore)

Matplotlib (Python)

MATLAB, Mathematica...caution

(According to Professor DeMarco)

matpl%tlib

19

Use specialized software for making professional-quality images

Line / vector art

Illustrator, CorelDraw Inkscape (free) Mathematica

3D Illustration

SketchUp (free), VPython (free), Blender (free) Autodesk products (free for students)

More great resources:

Edward R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative

(Cheshire, CT, Graphics Press, 1997)

"Graphing Resources"

(http://www.ncsu.edu/labwrite/res/res-homepage.htm), particularly their "Revising your Visuals" section

21

To recap:

Use figures to tell your story
For things that are hard to explain in words
To emphasize your main points
To give the audience something to remember
Label all elements in a figure
Pay attention to the DeMarco rules for plots
Use specialized software to create your figures

cmelliot@illinois.edu http://physics.illinois.edu/people/Celia/