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1 Introduction

Evolution by natural selection is the organizing principle which unites all aspects of biology. It has been
argued that to understand biological systems we must understand evolution - and there are still a lot of
open questions about how evolution works. We’re a long way from a predictive theory!

The experiment you will perform in this module recapitulates a result which stands as one of the
most important contributions of quantitative thinking to all of biology. The reason is simple – the results
require mathematical insight to correctly interpret the experiment and the question that is addressed is
of profound importance to understanding the mechanisms by which life evolves. As is often the case
with important contributions - the approach is simple in retrospect!

Natural selection as conceived by Wallace and Darwin in the 19th century has three main compo-
nents: variation, inheritance and competition. Variation is necessary to generate differences between
individuals in a population. These variations must then be passed down through generations (inher-
itance) and impact the growth or fitness of an organism during competition. The experiment we will
perform in this module asks a clear question about precisely how variation happens.

We would like to know whether mutations in the sequence of DNA that allow an organism to adapt
occur at random, and are subsequently selected during growth, or whether mutations are responsive to
the environment. You can think of the difference between these hypotheses as asking whether a Neo-
Darwinian picture of evolution is correct or a Larmarkian picture is correct. In a neo-darwinian picture
mutations are constantly happening randomly in a population of organisms. Mutations that help the
organism compete are then selected for through competition. We will call this the “random mutation
hypothesis." The other possibility we will call the “adaptive mutation" hypothesis is a Lamarckian
mechanism of adaptation. In this case mutations arise after the selection pressure is applied. In
the Lamarckian mechanism mutations occur in response to selection. An interesting historical note –
Darwin himself believed in Lamarckian mechanisms of variation!

2 A quantitative test

In 1943 Salvador Luria and Max Delbruück set out to ask whether the random or adaptive mutation
hypthesis was correct. They devised an ingenous quantitative experiment to answer the question. Your
goals are to (1) repeat this experiment and use simulations to determine whether mutations are adaptive
or random, (2) use the method you develop to measure mutation rates in two strains of bacteria.
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We begin with a brief overview of the experiment and a qualitative argument for how we can discrim-
inate between the two hypotheses. We then formally treat the problem and sketch out the simulation
you should perform.

2.1 Random mutations result in large fluctuations

Imagine a growing population of bacteria. In a single test tube of Escherichia coli there are ∼ 109 cells.
If you seed a test tube with say 103 cells and sufficient nutrients they will double roughly every half hour
for about 10 hours resulting in 20 generations or a 220 =1× 106-fold increase in the population size (Fig.
1A). At the end of this growth phase we could apply a selection pressure – in our case we will expose
the cells to an antibiotic (rifampicin (Fig. 1B)).

Intuition: We begin by making a qualitative argument for how we expect the experiment to come
out under the two hypotheses. Consider Fig. 1B – in the left panel we show two generation of bacterial
growth with each cell becoming two daughters. In the adaptive hypothesis the individuals in the growing
population are susceptible to the antibiotic (green dots). As a result, none of them are resistant to
the selection pressure when it is applied. Upon application of the antibiotic a few cells (red) acquire
resistance in response to the pressure and survive. This is the adaptive hypothesis.

Figure 1: Growth and the adaptation vs random hypotheses. A. Consider a test
tube with growing bacteria that start at some low population, grow for a period of
time before being plated onto media which applies a selection pressure to the cells
(virus in the case of the original paper, antibiotics in our experiment). B. Sketches for
the two hypotheses. In the adaptive hypothesis no mutants arise during growth (left)
but only appear after the selection pressure is applied (bottom). In the right panel
mutants arise during growth (red cells) and are present in the population before the
selection pressure is applied.

Contrast this with
the random hypothesis
(Fig. 1B, right panel).
Here growing popula-
tions randomly acquire
mutations before the
selection pressure is
applied. In this case
resistant mutants (red
cells) are present be-
fore they encounter an-
tibiotics. We call this
the random hypothesis.

Under the random
hypothesis if any one
cell mutates and be-
comes resistant all of
the daughter cells from that individual will also be resistant. Now imagine a population growing for
many generations. If, randomly, an individual early in the growth phase acquires a mutation this will
result in a HUGE subpopulation that has resistance because that individual had a lot of daughters,
grand daughters...etc (we assume mutants grow at the same rate as non-mutants). Luria and Delbrück
called these jackpot events. In contrast, under the adaptive hypothesis each cell has some probability
of mutating after the selection pressure is applied - but in this case each cell is an independent event -
whether one cell mutates is independent of another cell mutating. One way to quantify variability is to
compute a Fano factor (ratio of variance to mean in the number of mutants σ2/µ) which we will show is
significantly larger under the random hypothesis.

As you will see below there is a remarkable quantitative implication of considering these two hy-
pothesis mathematically. Namely, under the random hypothesis, once in a while there will be a muta-
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tion early in the growth phase that results in a large number of resistant mutants present. Under the
adaptive hypothesis the probability of observing a large number of mutants in any one population is
astronomically small! What this means is that if we look at an ensemble of populations (Fig. 1A) and
we consider the variability in the number of mutants we observe we will find a small variability under the
adaptive hypothesis and a large variability under the random hypothesis.

2.2 Interim Summary:

Therefore, in order to test the hypothesis (random vs. adaptive) we need to quantify the variability in
the number of mutants across independent populations. As is shown below, in the theory section, the
right way to measure this variability in our experiment is the Fano factor – the ratio of the variance to the
mean in the number of mutants we observe across populations. We show below, that for the adaptive
hypothesis we expect the Fano factor to be 1, while for the random hypothesis we expect the Fano
factor to be >> 1. Therefore, to test our hypothesis all we need to do is to experimentally measure the
number of mutants that arise in a large number of independent populations (wells in a 96-well plate)
and compute the average and variance in the number of mutants and take the ratio. If this number is
>> 1 it supports the random hypothesis, otherwise, it supports the adaptive hypothesis. We want you
to test this hypothesis by computing the Fano factor on your data.

2.3 Objectives

Questions you are expected to answer in your laboratory report:

• For wild-type E. coli (MG1655) perform a Luria-Delbruck experiment (see protocol) to measure
the mutation rate for this strain.

• For MG1655 compute the Fano factor (described below) for your data and answer the ques-
tion: are mutations random or adaptive?

• We will provide you with two additional strains of E. coli with higher mutation rates than wild type
(mutator strains, genetic variants of E. coli with a higher mutation rate). For at least one of the
mutator strains perform another Luria-Delbruck experiment and measure the mutation rate in this
strain. How does it compare to what you measured above for the wild-type?

Theoretically (and computationally) we would like you to complete the following objectives. These
are explained in more detail at the end of the document:

• Convince yourself that we can measure the mutation rate by counting the number of populations
we observe with zero mutants (Eqn. 10).

• Follow the derivation of the Fano factors for the two hypotheses.

• (Additional exercise 1) Perform a numerical simulation, using Matlab, to compute the Fano factor
under the two hypotheses. Use your measured mutation rate. How do the Fano factors compare?
Use the adaptive hypothesis as your null model and compute a p-value for the experimentally
observed Fano factor (for MG1655) under the null that the adaptive hypothesis is correct.
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• (Additional exercise 2) How does the Fano factor you computed for MG1655 compare to your ana-
lytical expectation? For example, if your data support the random hypothesis, is there quantitative
agreement between the Fano factor you get from your simulations or is one much different from
the other? Why might these numbers differ? One reason could be that mutants grow more slowly
than susceptible bacteria! Modify your simulation from exercise 1 to include this effect - how does
it change the Fano factor you observe in simulation?

• (bonus) Explore the meaning of mutation rates using stochastic simulations of genomes as de-
scribed in Additional exercise 3.

3 Theory

3.1 The adaptive hypothesis

Let’s start by considering a population of N cells that are exposed to a selection pressure. Say there
is a probability a that an individual adaptively mutates to resist the antibiotic. We now compute the
probability of observing m individuals (m < N ) that are resistant. The probability that m cells mutate is
just am. We need to multiply this by the probability that N−m cells do not mutate ((1−a)N−m). The cells
themselves are not labeled in any meaningful way so we need to account for the number of possible
ways of choosing m mutants from N cells and the result is the binomial distribution:

P (m,N) =
N !

m!(N −m)!
am(1− a)N−m (1)

a is the mutation rate – just the chance that a cell successfully mutates. It turns out that a << 1 (e.g.
1× 10−9 or so). Also, it is intuitive that the average number of mutants you should get if you performed
the experiment many times is 〈m〉 = aN . This is because you have N individuals each with a chance a
of mutating. Since a«1, on average m«N. Using this limit we can make the following simplifications.Note,
in this document’s text, we will use () to denote multiplication and [] to denote function. Some figures
do not make this distinction.

P [m,N ] =
N(N − 1)..(N −m)

m!
am(1− a)N−m (2)

P [m,N ] ≈ Nm

m!
am(1− a)N (3)

P [m,N ] ≈ (aN)m

m!
(1− a)N (4)

Now recall the following limit:

ex = lim
N→∞

[
1 +

x

N

]N
Now rewrite Eqn. 4 as

P [m,N ] ≈ (aN)m

m!

(
1− aN

N

)N
(5)

P [m,N ] ≈ (aN)m

m!
e−aN (6)
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and use the average we mentioned above to find the result that:

P [m,N ] ≈ 〈m〉
m

m!
e−〈m〉 (7)

Equation 7 is the Poisson distribution, and it is true anytime N is large and the probability a is small –
anytime you have a binomial distribution in this regime the limit derived is correct.

Optional computational exercise: Check that a Poisson distribution is a good approximation to a
binomial when N is large and a is small. At values of N and a does the approximation start to break
down?

Equation 7 let’s us compute how many resistant cells we expect to find in a population of N cells
if we assume that the adaptive hypothesis is correct. That’s great, but to do this we need to know two
things: (1) the number of cells N – which we can measure (see below) and (2) the mutation rate a.
What is a? How do we compute it?

3.2 Measuring the mutation rate

Luria and Delbruück presented a remarkably clever way to compute the mutation rate which works
irrespective of which of the two hypotheses is correct! Imagine there are N cells – this means that there
were N chances (division events) to get a mutation that conferred resistance to the antibiotic. Under
the adaptive hypothesis the Poisson distribution tells us how many cells will be resistant, but under the
random hypothesis it does not! Why? Because if a cell mutated early during the growth phase it would
give rise to many many daughter cells that are resistant because they inherited the mutation (Fig.
1B) but didn’t mutate themselves. However, the key insight is that the Poisson distribution correctly
describes the probability of observing zero mutants in both cases! The reason is that under both
hypotheses if no mutations occurr during growth there will be no mutants! (We assume that there were
no mutants originally.) Let’s go back to the binomial distribution (Eqn. 1) and put in m = 0

P [0, N ] =
N !

N !
a0(1− a)N (8)

P [0, N ] ≈ e−aN (9)

We can then solve for a and get:

a = − ln[P [0, N ]]

N
(10)

So we now need an estimate of P [0, N ] – the key insight is to realize that we can compute this by
performing many parallel growth experiments (Fig. 1A) and compute the fraction of populations where
we observe no mutants. Using this estimate of the probability of observing zero mutants, we can
compute a directly from data! Eighty years after the work of Luria and Delbrück this remains a standard
laboratory technique for estimating mutation rates.

Note that we can now compute the expected number of mutants under the adaptive hypthesis as
〈m〉 = aN . We’ll need this in the next section:

3.3 Mean and variance under adaptive hypothesis

Now we are prepared to compute the Fano factor under the adaptive hypothesis. To do this we need
simply to compute the mean and variance for the Poisson distribution. We leave this as an exercise to
the reader, recall that the mean and variance are computed as follows:
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µ =
∞∑
m=0

mP [m,N ] (11)

σ2 = 〈m2〉 − 〈m〉2 =
∞∑
m=0

m2P [m,N ]− µ2 (12)

We leave it as exercise to the student to show that:

σ2 = µ (13)

Which means that the Fano factor for the adaptive hypothesis is unity!

F adapt =
σ2

µ
= 1 (14)

What does this mean? If we perform the experiment many times (Fig. 1) we can compute the
number of mutations that are present in each of a large number of replicate populations of size N . We
can then directly compute F from data and check – is it close to one or not?

Our next claim is that F rand, the Fano factor under the random hypothesis, is much larger than unity.
This proof requires a bit more effort.

3.4 The random hypothesis

Figure 2: Generating mutants under the ran-
dom hypothesis. There are two routes to gener-
ating mutants under the random hypothesis. (top)
A susceptible cell mutates giving rise to a mutant.
This increases the number of mutants by 1 and has
a weight of aN [t]dt since there are N cells each
with the same chance of mutating to become re-
sistant. (bottom) a second possibility is a mutant
cell that divides in two with growth rate λ and this
increments the number of mutants up by 1 as well
and has weight mλdt.

We would now like to compute the same quantity (F )
assuming that the random hypothesis is correct. The
problem is that resistant mutants arise via two pro-
cesses in the random hypothesis: mutations of sus-
ceptible cells and growth of mutants. Since we can-
not predict precisely when during growth a mutation
will occur, we need to use some more sophisticated
machinery to get there. We will use a master equa-
tion formalism. A master equation is similar to writ-
ing a derivative, only it is for probabilities instead of
deterministic equations like in calculus. Basically, a
master equation says that the rate of change (with re-
spect to time) of being in a state s at time t is the
probability of staying in or transitioning into state s mi-
nus the probability of transitioning out of state s. For
example, lets have a system with different possible
states say s − 1, s, s + 1, etc., where there is a tran-
sition rate of moving from one state to a different state
such as s − 1 −→ s. Here the probability of transi-
tioning into state s is the probability of being in another state, say s − 1, at time t − 1 times the
transition rate per unit time from s − 1 −→ s. Similarly, the probability of transitioning out of state
s is the probability of being in state s at time t − 1 times the transition rate of leaving state s.
These concepts will be described a bit more later while introducing our master equation, but if you
need some better intuition for master equations you can look up online resources such as this one
(http://biotheory.phys.cwru.edu/phys320/phys320_master_equation_I.pdf).
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3.4.1 Expected number of mutants under random hypothesis

We want an equation of motion for the number of mutants we expect to be in the population at a given
time. To do this we need to first enumerate the ways in which mutants can be generated (Fig. 2), i.e.
a mutant cell doubles or a regular cell mutates. We also need to write down the transition probabilities
per unit time (see right column of Fig. 2). The master equation formalism is very simple. Given known
transition probabilities (rates), what equation describes the dynamics of the number of mutants in time?
To answer this consider the following, remember () denotes multiplication and [] denotes a function:

∂p[m, t]

∂t
= probability of transitioning into state m− probability of transitioning out of state m (15)

∂p[m, t]

∂t
= +(m− 1) mutants at t− 1 and one doubled

+ (m− 1) mutants at t− 1 and new mutant arose

−m mutants at t− 1 and one grew

−m mutants at t− 1 and a new one mutated.

Mathematically we get:

∂p[m, t]

∂t
= λ(m− 1)p[m− 1, t] + aN [t]p[m− 1, t]− λmp[m, t]− aN [t]p[m, t] (16)

Remember our goal is to compute the Fano factor and compare its magnitude to the adaptive hy-
pothesis. To do this we need to compute the average number of mutants after some time and the
variance in the number of mutants. To proceed we compute the first and second moments of p(m, t) by
multiplying both sides by m and summing as follows:

∞∑
m=1

∂mp[m, t]

∂t
=
∂〈m〉
∂t

=
∞∑
m=1

m(λ(m− 1)p[m− 1, t]− λmp[m, t] + aN [t]p[m− 1, t]− aN [t]p[m, t]) (17)

Which is an admittedly messy differential equation for the first moment. We deploy some tricks to
solve this equation. The first term on the right hand side yields to the following manipulation.

λ

∞∑
m=1

m(m− 1)p[m− 1, t] (18)

Make the following change of variables m− 1 = m′ to arrive at

λ
∞∑

m′=−1

(m′ + 1)(m′)p[m′, t] (19)

but having less than zero mutants is not possible so we can change the limit of the sum to 0 and expand
to get:

λ
∞∑

m′=0

(m′2 +m′)p[m′, t] = λ(〈m2〉+ 〈m〉) (20)
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For the third term on the RHS of Eqn. 17 we can apply the very same trick after some additional
trickery:

∞∑
m=1

mp[m− 1, t] =
∞∑
m=1

(m− 1 + 1)p[m− 1, t] =
∞∑
m=1

(m′ + 1)p[m′, t] = (〈m〉+ 1) (21)

We can now write Eqn. 17 as:

∂〈m〉
∂t

= λ(〈m2〉+ 〈m〉)− λ〈m2〉+ aN [t](〈m〉+ 1)− aN [t]〈m〉 (22)

which simplifies to:
∂〈m〉
∂t

= λ〈m〉+ aN [t] (23)

This is a remarkably simple result that makes good intuitive sense! The first term on the RHS is the
exponential growth of mutants that are present in the population. The second term is the increase in the
number of mutants due to additional mutations. Compare this for a moment to the exponential growth
of a population of cells:

dN [t]x

dt
= λN [t] (24)

which has the solution: N [t] = N [0]eλt where N [0] is the number of cells at time zero and must be
specified. Compare Eqn. 24 to Eqn. 23 to realize that the mutant population actually grows faster than
the non-mutant population because of the two processes involved (Fig. 2). Of course we are assuming
that λ does not change for the mutants which is a reasonable approximation.

Plugging N [t] = N [0]eλt into Eqn. 23 we get a differential equation for the expected number of
mutants at time t which we can solve analytically (or just look it up) from which we arrive at:

〈m[t]〉 = atN [t] (25)

3.4.2 Expected variance in the number mutants under random hypothesis

To compute the Fano factor we need to compute the variance in the number of mutants we expect.
Recall σ2 = 〈m2〉 − 〈m〉2, meaning we need to calculate 〈m2〉 and we’re done! To do this we take the
same approach, but we multiple Eqn. 17 by m2 and applying precisely the same tricks we applied
above. Doing so yields the following differential equation (check for yourself!):

∂〈m2〉
∂t

= 2λ〈m2〉+ λ〈m〉+ 2aN [t]〈m〉+ aN [t] (26)

Again, plug in N [t] = N [0]eλt and simplify. Then solve the differential equation or lookup the solution to
get:

〈m(t)2〉 = aN [0]eλt

λ
(2eλt − tλ− 2) + 〈m[t]〉2 (27)

which means that

σ2 =
aN [0]eλt

λ
(2eλt − tλ− 2) (28)

Now, we make some approximations, namely that e2t >> et for large t and we arrive at

σ2 ≈ 2aN [0]e2λt

λ
. (29)
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From equation 25 we have that N(0)eλt = 〈m[t]〉/(at) which results in

σ2 ≈ 2〈m〉eλt

λt
. (30)

Which means that the Fano factor under the random hypothesis is given by:

F rand ≈ 2eλt

λt
. (31)

This was our objective! How does this number compare to F adapt = 1? To compute this we need to know
λt which is the number of generations that transpire during the growth of the culture. As we mentioned
above, E. coli will grow from a population of about 1× 103 or 1× 104 to 1× 109 in a test tube overnight.
This means that there are ≈1× 109 new cells which divide over the growth phase. How many times
must the population double for this to happen? If N [0] =1× 104 then the population expands 1× 105

times and this requires log2[1× 105] = 16.6 doublings of the population. This means that λt =16.6 which
gives a Fano factor of F rand ≈1× 106 >> 1!

What does this mean for the experiment? This means that if we perform the experiment shown in
Fig. 1A with many parallel populations undergoing many divisions and then we assay all cells for their
susceptibility to antibiotics and we compute the Fano factor across replicate cultures we expect that this
number should be unity if the adaptive hypothesis is correct and much bigger than unity if the random
hypothesis is correct!

If you would like to read the sources on which this document is based see the original paper from
Luria and Delbrück (Genetics, 28, 6, 491-511 (1943)). The derivations below are taken from the second
edition of the textbook: The physical biology of the cell by Phillips, Kondev, Theriot and Garcia. Note
that in that text there are several typos in the master equation derivation which have been corrected in
the presentation below. You can also read the relevant section in Philip Nelson’s text Physical models
of living systems.

3.5 A computer simulation

In addition to the experiments explained in the experimental protocols, we would like you to perform
numerical simulations of the adaptive and random hypotheses. To do this you need to write Matlab
code to simulate the growth and mutations under the two hypotheses.

To accomplish this I suggest you NOT try and simulate every cell in a population that reaches a size
of 1× 109! Your computer will run out of memory quickly. Instead simulate two populations mutants
and susceptible cells (which we will call wild type cells). We will walk you through the easier of the two
simulations – the adaptive hypothesis.

Start by computing a from your data – it will be a number of order 1× 10−9. The adaptive hypothesis
states that this mutation rate is the rate at which cells acquire mutations after the selection pressure
is applied. When you plate cells after growth, you take a population of ∼109 cells and plate them
on antibiotics. When you count colonies, you are measuring the number of cells that are resistant to
the antibiotics. Under the adaptive hypothesis, this number is Poisson distributed with mean aN . To
simulate this process you simply need to take random draws from a Poisson distribution with mean aN
for each "plate". Then you need to compute a variance and mean in the number of mutants that arise
across all plates in a numerical experiment. Estimate a Fano factor from this.
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For the random hypothesis, the simulation is more involved. In this case you need to simulate the
processes of growth and mutation. To do this start a population of say 103 cells and use each cycle of
a for-loop to allow them to double. During each doubling, generate aN new mutants from the wild-type
population using the Poisson distribution mentioned above. Be sure to allow those mutants to double
with each cycle.

(Additional exercise 1) Computationally address the following question: what is the probability of
observing a Fano factor as big or bigger than the one you measured in your experiment (with wild-type)
under the adaptive hypothesis? This probability is called a p-value for the adaptive hypothesis as the
null hypothesis. Do compute this number run many (>1000) simulations under the adaptive hypothesis.
Then ask yourself: if I were to choose one of these 1000 simulation results at random, what would the
chance be that the Fano factor for that simulation exceeds the factor I measured experimentally? How
do you compute this probability? What is it?

(Additional exercise 2) Mutations often change the growth rate of cells. For example, there are often
‘trade-offs’ where mutations that give cells resistance to antibiotics slow their growth in the absence of
antibiotics (for an example of this see recent work from my lab: Fraebel et al. eLife, 2017). Repeat
your simulations above with different growth rates for the mutants. Your objective is to answer the ques-
tion: how does the Fano factor depend on how much slower resistant mutants grow than the wild-type
strain? To anwer this question repeat your simulation for a set of mutant growth rates varying from 0.1%
to 10% reduction in growth rate relative to the wild type. Construct a plot of the expected value of the
Fano factor as a function of mutant growth rates.

(Additional exercise 3 – bonus) What does the mutation rate you infer above actually mean? Here
you explore this question computationally. Your simulations for exercises 1 and 2 should have been
continuous simulations of a model described by differential equations. Here we ask that you extend
these simulations to a stochastic model which simulates not only individual replication events but also
the genomes of each cell as it divides. You will have to keep populations in these simulations smaller
in order to maintain computational tractability. We suggest your simulation has the following structure:

• Initiate your population with a single cell that is described by a genome which is a binary vector of
modest length (100 ‘base pairs’).

• In each round of the simulation replicate each individual in the population. For each base pair
in the genome include a per site mutation rate which is the probability of flipping that site. We
suggest you simulate between 8 and 10 doublings (e.g. up to 1024 individuals). Divisions can be
synchronous to keep the simulation simple.

• At the end of the simulation compare the starting genome of the founding cell to the genome of
each individual in the population. How many mutants are there? (where a mutant is a cell that
differs at any ONE position in the genome). Given the per base pair mutation rate and the number
of replications in your simulation - does the number you obtain make sense?

• For evolution to ‘work’ random mutations have to occur in the correction position on the genome.
Pick a particular position and compute the probability of that position being mutated in any given
individual in the population. What is that probability? What do you expect it to be?
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• From your simulation where a particular mutation is the target perform a version of the Luria-
Delbruck simulation in silico – with many replicate populations being ‘plated’ on an antibiotic.
Only mutants with a specific mutation survive. Compute the parameter a as you would in the
experiment. How does the parameter compare to the per site mutation rate you put into your
simulation? Note you will have to tune your parameters so that there is a reasonable probability
of the mutant arising in the population.

• What happens to a if multiple mutations are sufficient to survive the antibiotic?
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