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Revision and Warm-up exercises

These problems are designed to reactivate your mathematical skills after a relaxing summer

break. They are not designed to be easy! Each one has some twist that is designed to catch

you out if you merely manipulate symbols without thinking.

Differential Calculus: After taking a previous version of this course, a student claimed

that the expression

y(x) =
1

ω sinωL

{∫ x

0

f(t) sinω(x− L) sinωt dt+

∫ L

x

f(t) sinωx sinω(t− L) dt

}

is the solution to the problem: “Find y(x) obeying the differential equation

d2y

dx2
+ ω2y = f(x)

on the interval [0, L] and satisfying the boundary conditions y(0) = 0 = y(L).” First examine

her solution to see if it obeys the boundary conditions. Then, by differentiating her solution

twice with respect to x and substituting the result into the differential equation, investigate

whether her solution is correct.

A second student claimed that if K(x) and f(x) are smooth functions with K(0) = 1,

and we set

F (x) =

∫ x

0

K(x− y)f(y) dy,

then

F ′(x) =

∫ x

0

K(x− y)f ′(y) dy.

(Here the “prime” denotes differentiation with respect to x or y, as appropriate.) Was he

correct? If so, explain why the answer is right. If he was wrong, find the correct formula.

Integral Calculus: Let µ > λ > 0 be real numbers. Sketch (by hand) a graph of the

function

F (t) =
e−λt

− e−µt

t
, 0 < t <∞.

Now a student wishes to evaluate the integral

I(λ, µ) =

∫

∞

0

e−λt
− e−µt

t
dt.

He breaks it up as

I(λ, µ) =

∫

∞

0

e−λt

t
dt−

∫

∞

0

e−µt

t
dt.
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In the first integral he makes the substitution x = λt. In the second he sets x = µt. He ends

up with

I(λ, µ) =

∫

∞

0

e−x

x
dx−

∫

∞

0

e−x

x
dx.

As the two integrals are identical, he concludes that I(λ, µ) = 0. From your sketch of the

function being integrated, you know that he has gone wrong somewhere. Locate the error in

his method, and make the small but crucial modification that leads to the correct answer.

Confirm your result by using Feynman’s trick of first computing the easy integral for ∂I/∂µ,

and then integrating the result with respect to µ.

Now use a similar method to evaluate

I =

∫

∞

0

ln

{

a + be−px

a + be−qx

}

dx

x
,

where you may assume that a, b, p, q are positive real numbers.

Trigonometric functions: Imagine that when solving one-dimensional quantum mechanics

scattering problem you find a wavefunction ψ(x) = sin(kx + δ) where you know that the

phase shift δ is a smooth (infinitely differentiable) function of k that obeys the equation

cot(ka + δ) − cot ka = λ.

Solving formally for δ(k), you write

δ(k) = −ka + cot−1(λ+ cot ka).

First assume that λ = 0 and draw the graph of δ(k) versus k. Now consider effect the on

your graph of a nonzero and positive λ. If λ is fairly large compared to unity, sketch by hand

the graph of the function δ(k). Label the points on the k axis where ka is a multiple of π,

so I can see their relation to the places where δ(k) has wiggles.

The point of this problem is to understand what the graph looks like without using a

computer or graphing calculator. (Indeed programs such as MathematicaTM fail to plot this

function correctly.) Your solution should therefore include the reasoning that lead to your

curve.

Partial Derivatives: Suppose that you know a wavefunction ψ(x, t) obeying the time-

dependent Schrödinger equation

i~
∂ψ

∂t
= −

~
2

2m

∂2ψ

∂x2
+ V (x)ψ.

Now start running at velocity −U . Seen from your moving frame the potential is moving,

so the wavefunction must obey the Schrödinger equation

i~
∂ψ̃

∂t
= −

~
2

2m

∂2ψ̃

∂x2
+ V (x− Ut)ψ̃.
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How is ψ̃ related to ψ? To find out, make a change of variables

z = x− Ut,

τ = t,

and use the chain rule for partial derivatives to express

(

∂ψ̃

∂t

)

x

,

(

∂ψ̃

∂x

)

t

, in terms of

(

∂ψ̃

∂τ

)

z

,

(

∂ψ̃

∂z

)

τ

.

Use these relations to find the equation obeyed by ψ̃ as a function of z and τ . Show how you

can modify the original ψ(x, t) in order to obtain a solution ψ̃(z, τ) to this new equation.

Restore x and t, and conclude that the solution to the equation with the moving potential is

ψ̃(x, t) = eimUx/~−i 1

2
mU2t/~ψ(x− Ut, t).

Verify this by substituting ψ̃(x, t) into the moving-potential Schrödinger equation. This

ψ̃(x, t) must be how the original wavefunction appears when seen from the moving frame.

Conclude that Schrödinger wavefunctions do not transform as scalars under Galilean trans-

formations.

Matrix Algebra: The linear operator T is represented by an N ×N matrix, where N > 1.

T obeys the equation

(T − λI)p = 0,

with p = N , but does not obey this equation for any integer p < N . Here λ is a real number

and I is the identity operator.

i) Show that if T possesses an eigenvector, the corresponding eigenvalue must be λ.

Deduce that T cannot be diagonalized.

ii) Show that there exists a vector e1 such that (T − λI)Ne1 = 0, but no lesser power of

(T − λI) kills e1.

iii) Define e2 = (T − λI)e1, e3 = (T − λI)2e1, etc. up to eN . Show that the vectors

e1, . . . , eN are linearly independent.

iv) Use e1, . . . , eN as a basis for your vector space. Taking

e1 =









0
...
0
1









, e2 =









0
...
1
0









, . . . , eN =









1
0
...
0









,

write out the matrix representing T in the ei basis.
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