Physics 508
Handout 12
Oct 2016

Mathematical Methods in Physics I
Course Material
Homework 12

Prof. M. Stone
2117 ESB University of Illinois

Here are some optional problems on integral equations. They are taken verbatim from Paul Goldbart's homework sets.

1) Integral equations:

a) Solve the inhomogeneous type II Fredholm integral equation

$$
u(x)=\mathbf{e}^{x}+\lambda \int_{0}^{1} x y u(y) d y
$$

b) Solve the homogeneous type II Fredholm integral equation

$$
u(x)=\lambda \int_{0}^{\pi} \sin (x-y) u(y) d y
$$

c) Solve the inhomogeneous type II Fredholm integral equation

$$
u(x)=x+\lambda \int_{0}^{1} y(x+y) u(y) d y
$$

to second order in λ using
i) the Liouville-Neumann-Born series; and
ii) the Fredholm series.
d) By differentiating, solve the integral equation: $u(x)=x+\int_{0}^{x} u(y) d y$.
e) Solve the integral equation: $u(x)=x^{2}+\int_{0}^{1} x y u(y) d y$.
f) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

$$
u(x)=\lambda \int_{0}^{1} \mathbf{e}^{x-y} u(y) d y
$$

g) Solve the integral equation: $u(x)=\mathbf{e}^{x}+\lambda \int_{0}^{1} \mathbf{e}^{x-y} u(y) d y$.
2) Neumann Series: Consider the integral equation

$$
u(x)=g(x)+\lambda \int_{0}^{1} K(x, y) u(y) d y
$$

in which only u is considered unknown.
a) Write down the solution $u(x)$ to second order in the Liouville-Neumann-Born series.
b) Suppose $g(x)=x$ and $K(x, y)=\sin 2 \pi x y$. Compute $u(x)$ to second order in the Liouville-Neumann-Born series. (You may leave your answer to the second-order term in terms of a single integral.)

3) Translationally invariant kernels:

a) Consider the integral equation: $u(x)=g(x)+\lambda \int_{-\infty}^{\infty} K(x, y) u(y) d y$, with the translationally invariant kernel $K(x, y)=Q(x-y)$, in which g, λ and Q are considered known. Show that the Fourier transforms \hat{u}, \hat{g} and \hat{Q} satisfy $\hat{u}(q)=\hat{g}(q) /\{1-\sqrt{2 \pi} \lambda \hat{Q}(q)\}$. Expand this result to second order in λ to recover the second-order Liouville-NeumannBorn series.
b) Use Fourier transforms to find a solution of the integral equation

$$
u(x)=\mathbf{e}^{-|x|}+\lambda \int_{-\infty}^{\infty} \mathbf{e}^{-|x-y|} u(y) d y
$$

which remains finite as $|x| \rightarrow \infty$.
c) Use Laplace transforms to find a solution for $x>0$ of the integral equation

$$
u(x)=\mathbf{e}^{-x}+\lambda \int_{0}^{x} \mathbf{e}^{-|x-y|} u(y) d y .
$$

