Physics 508	Mathematical Methods in Physics I	Prof. M. Stone
Handout 12	Course Material	2117 ESB
Oct 2016	Homework 12	University of Illinois

Here are some optional problems on integral equations. They are taken *verbatim* from Paul Goldbart's homework sets.

1) Integral equations:

a) Solve the inhomogeneous type II Fredholm integral equation

$$u(x) = \mathbf{e}^x + \lambda \int_0^1 xy \, u(y) \, dy \, .$$

b) Solve the homogeneous type II Fredholm integral equation

$$u(x) = \lambda \int_0^\pi \sin(x - y) \, u(y) \, dy.$$

c) Solve the inhomogeneous type II Fredholm integral equation

$$u(x) = x + \lambda \int_0^1 y(x+y) \, u(y) \, dy$$

to second order in λ using

- i) the Liouville-Neumann-Born series; and
- ii) the Fredholm series.
- d) By differentiating, solve the integral equation: $u(x) = x + \int_0^x u(y) \, dy$. e) Solve the integral equation: $u(x) = x^2 + \int_0^1 xy \, u(y) \, dy$.
- f) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

$$u(x) = \lambda \int_0^1 \mathbf{e}^{x-y} \, u(y) \, dy \, .$$

g) Solve the integral equation: $u(x) = \mathbf{e}^x + \lambda \int_0^1 \mathbf{e}^{x-y} u(y) \, dy$.

2) Neumann Series: Consider the integral equation

$$u(x) = g(x) + \lambda \int_0^1 K(x, y) u(y) \, dy \,,$$

in which only u is considered unknown.

- a) Write down the solution u(x) to second order in the Liouville-Neumann-Born series.
- b) Suppose g(x) = x and $K(x, y) = \sin 2\pi xy$. Compute u(x) to second order in the Liouville-Neumann-Born series. (You may leave your answer to the second-order term in terms of a single integral.)

3) Translationally invariant kernels:

- a) Consider the integral equation: $u(x) = g(x) + \lambda \int_{-\infty}^{\infty} K(x, y) u(y) dy$, with the translationally invariant kernel K(x, y) = Q(x-y), in which g, λ and Q are considered known. Show that the Fourier transforms \hat{u} , \hat{g} and \hat{Q} satisfy $\hat{u}(q) = \hat{g}(q)/\{1 - \sqrt{2\pi\lambda}\hat{Q}(q)\}$. Expand this result to second order in λ to recover the second-order Liouville-Neumann-Born series.
- b) Use Fourier transforms to find a solution of the integral equation

$$u(x) = \mathbf{e}^{-|x|} + \lambda \int_{-\infty}^{\infty} \mathbf{e}^{-|x-y|} u(y) \, dy$$

which remains finite as $|x| \to \infty$.

c) Use Laplace transforms to find a solution for x > 0 of the integral equation

$$u(x) = \mathbf{e}^{-x} + \lambda \int_0^x \mathbf{e}^{-|x-y|} u(y) \, dy \, .$$