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Here are some optional problems on integral equations. They are taken verbatim from

Paul Goldbart’s homework sets.

1) Integral equations:

a) Solve the inhomogeneous type II Fredholm integral equation

u(x) = ex + λ

∫
1

0

xy u(y) dy .

b) Solve the homogeneous type II Fredholm integral equation

u(x) = λ

∫
π

0

sin(x − y) u(y) dy .

c) Solve the inhomogeneous type II Fredholm integral equation

u(x) = x + λ

∫
1

0

y(x + y) u(y) dy

to second order in λ using

i) the Liouville-Neumann-Born series; and

ii) the Fredholm series.

d) By differentiating, solve the integral equation: u(x) = x +
∫

x

0
u(y) dy.

e) Solve the integral equation: u(x) = x2 +
∫

1

0
xy u(y) dy.

f) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

u(x) = λ

∫
1

0

ex−y u(y) dy .

g) Solve the integral equation: u(x) = ex + λ
∫

1

0
ex−y u(y) dy.
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2) Neumann Series: Consider the integral equation

u(x) = g(x) + λ

∫
1

0

K(x, y) u(y) dy ,

in which only u is considered unknown.

a) Write down the solution u(x) to second order in the Liouville-Neumann-Born series.

b) Suppose g(x) = x and K(x, y) = sin 2πxy. Compute u(x) to second order in the

Liouville-Neumann-Born series. (You may leave your answer to the second-order term

in terms of a single integral.)

3) Translationally invariant kernels:

a) Consider the integral equation: u(x) = g(x) + λ
∫ ∞

−∞
K(x, y) u(y) dy , with the transla-

tionally invariant kernel K(x, y) = Q(x−y), in which g, λ and Q are considered known.

Show that the Fourier transforms û, ĝ and Q̂ satisfy û(q) = ĝ(q)/{1 −
√

2πλQ̂(q)}.
Expand this result to second order in λ to recover the second-order Liouville-Neumann-

Born series.

b) Use Fourier transforms to find a solution of the integral equation

u(x) = e−|x| + λ

∫ ∞

−∞

e−|x−y| u(y) dy

which remains finite as |x| → ∞.

c) Use Laplace transforms to find a solution for x > 0 of the integral equation

u(x) = e−x + λ

∫
x

0

e−|x−y| u(y) dy .
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