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1) Test functions and distributions:

a) Let f(x) be a smooth function.

i) Show that f(x)δ(x) = f(0)δ(x). Deduce that

d

dx
[f(x)δ(x)] = f(0)δ′(x).

ii) We might also have used the product rule to conclude that

d

dx
[f(x)δ(x)] = f ′(x)δ(x) + f(x)δ′(x).

By integrating both against a test function, show this expression for the derivative

of f(x)δ(x) is equivalent to that in part i).

b) Let G(x) be a smooth function that decreases rapidly to zero as |x| → ∞, and ϕ(x) a

smooth function such that its derivative ϕ′(x) decreases rapidly to zero as |x| → ∞.

Show that
∫ ∞

−∞

∫ ∞

−∞

ϕ′(x)ϕ′(y)G(|x− y|) dxdy =
1

2

∫ ∞

−∞

∫ ∞

−∞

[ϕ(x)− ϕ(y)]2G′′(|x− y|) dxdy.

c) In a paper1 that has recently been cited in the literature on topological insulators a

distribution δ(1/2)(x) is defined by setting

δ(1/2)(x) =

∫ ∞

−∞

dk

2π
|k|1/2eikx.

The Fourier transform on the RHS is clearly divergent, so we need to decide how to

interpret it. Let’s try to define the evaluation of δ(1/2) on a test function ϕ(x) as

∫ ∞

−∞

δ(1/2)(x)ϕ(x) dx
def
= lim

µ→0+

{
∫ ∞

−∞

δ(1/2)µ (x)ϕ(x) dx

}

.

where

δ(1/2)µ (x)
def
=

∫ ∞

−∞

eikx|k|1/2e−µ|k| dk

2π

=

√

1

4π
(x2 + µ2)−3/4 cos

(

3

2
tan−1

(

x

µ

))

.

(Could you have evaluated this integral if I had not given you the answer?)

1H. Aratyn, Fermions from Bosons in 2+1 dimensions, Phys. Rev. D 28 (1983) 2016-18.
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Plot some graphs of δ
(1/2)
µ (x) for various values of µ, and so get an idea of how it

behaves as the convergence factor e−µ|k| → 1. Deduce that

∫ ∞

−∞

δ(1/2)(x)ϕ(x) dx = −

√

1

8π

∫ ∞

−∞

1

|x|3/2
{ϕ(x)− ϕ(0)} dx.

(Hint: Observe that δ
(1/2)
µ (x) is the Fourier transform of a function that vanishes at

k = 0. What property of the the graph of δ
(1/2)
µ (x) does this imply?)

d) Let ϕ(x) be a test function. Using the definition of the principal part integral , show

that
d

dt

{

P

∫ ∞

−∞

ϕ(x)

(x− t)
dx

}

= P

∫ ∞

−∞

ϕ(x)− ϕ(t)

(x− t)2
dx

To do this fix the value of the cutoff ǫ and then differentiate the resulting ǫ-regulated

integral, taking care to include the terms arising from the t dependence of the limits

at x = t± ǫ.

2) One-dimensional scattering theory: Consider the one-dimensional Schrödinger equa-

tion

−
d2ψ

dx2
+ V (x)ψ = Eψ

where V (x) is zero except in a finite interval [−a, a] near the origin.

x

V(x)

a

L R

−a

Let L denote the left asymptotic region, −∞ < x < −a, and similarly letR denote∞ > x > a.

For E = k2 and k > 0 there will be scattering solutions of the form

ψk(x) =

{

eikx + rL(k)e
−ikx, x ∈ L,

tL(k)e
ikx, x ∈ R,

describing waves incident on the potential V (x) from the left. For k < 0 there will be

solutions with waves incident from the right

ψk(x) =

{

tR(k)e
ikx, x ∈ L,

eikx + rR(k)e
−ikx, x ∈ R.

The wavefunctions in [−a, a] will naturally be more complicated. Observe that [ψk(x)]
∗ is

also a solution of the Schrödinger equation.

By using properties of the Wronskian, show that:
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a) |rL,R|
2 + |tL,R|

2 = 1,

b) tL(k)=tR(−k).

c) Deduce from parts a) and b) that |rL(k)| = |rR(−k)|.

d) Take the specific example of V (x) = λδ(x− b) with |b| < a. Compute the transmission

and reflection coefficients and hence show that rL(k) and rR(−k) may differ by a phase.

3) Reduction of Order: Sometimes additional information about the solutions of a differ-

ential equation enables us to reduce the order of the equation, and so solve it.

a) Suppose that we know that y1 = u(x) is one solution to the equation

y′′ + V (x)y = 0.

By trying y = u(x)v(x) show that

y2 = u(x)

∫ x dξ

u2(ξ)

is also a solution of the differential equation. Is this new solution ever merely a constant

mutiple of the old solution, or must it be linearly independent? (Hint: evaluate the

Wronskian W (y2, y1).)

b) Suppose that we are told that the product, y1y2, of the two solutions to the equation

y′′ + p1y
′ + p2y = 0 is a constant. Show that this requires 2p1p2 + p′2 = 0.

c) By using ideas from part b) or otherwise, find the general solution of the equation

(x+ 1)x2y′′ + xy′ − (x+ 1)3y = 0.

4) Normal forms and the Schwarzian derivative: We saw in class that if y obeys a

second-order linear differential equation

y′′ + p1y
′ + p2y = 0

then we can make always make a substitution y = wỹ so that ỹ obeys an equation without

a first derivative:

ỹ′′ + q(x)ỹ = 0.

Suppose ψ(x) obeys a Schrödinger equation

(

−
1

2

d2

dx2
+ [V (x)−E]

)

ψ = 0.
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a) Make a smooth and invertible change of independent variable by setting x = x(z) and

find the second order differential equation in z obeyed by ψ(z) ≡ ψ(x(z)). Find the

ψ̃(z) that obeys an equation with no first derivative. Show that this equation is

(

−
1

2

d2

dz2
+ (x′)2[V (x(z))− E]−

1

4
{x, z}

)

ψ̃(z) = 0,

where the primes denote differentiation with respect to z, and

{x, z} ≡
x′′′

x′
−

3

2

(

x′′

x′

)2

is called the Schwarzian derivative of x with respect to z. Schwarzian derivatives play

an important role in conformal field theory and string theory.

b) Now combine a sequence of maps x→ z → w to establish Cayley’s identity

(

dz

dw

)2

{x, z} + {z, w} = {x, w}.

(Hint: If this takes you more than a line or two, you are missing the point of the

problem.)
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