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1) Linear differential operators:

a) Let w(x) > 0. Consider the differential operator L̂ = id/dx. Find the formal adjoint

of L with respect to the inner product 〈u|v〉
w

=
∫

wu∗v dx, and find the corresponding

surface term Q[u, v].

b) Now do the same for the operator M = d4/dx4, for the case w = 1. Find the adjoint

boundary conditions defining the domain of M † for the case

D(M) = {y, y(4) ∈ L2[0, 1] : y(0) = y′′′(0) = y(1) = y′′′(1) = 0}.

(Hint: you may find the identity

f (4)g − fg(4) =
d

dx
{f ′′′g − f ′′g′ + f ′g′′ − fg′′′}

to be of use.)

2) Sturm-Liouville forms: By constructing appropriate weight functions convert the fol-

lowing common operators into Sturm-Liouville form:

a) L̂ = (1 − x2) d2/dx2 + [(µ− ν) − (µ+ ν + 2)x] d/dx.

b) L̂ = (1 − x2) d2/dx2 − 3x d/dx.

c) L̂ = d2/dx2 − 2x(1 − x2)−1 d/dx−m2 (1 − x2)−1.

3) Discrete approximations and self-adjointness: Consider the second order inhomo-

geneous equation Lu ≡ u′′ = g(x) on the interval 0 ≤ x ≤ 1. Here g(x) is known and

u(x) is to be found. We wish to solve the problem on a computer, and so set up a discrete

approximation to the ODE in the following way:

• replace the continuum of independent variables 0 ≤ x ≤ 1 by the discrete lattice of

points 0 ≤xn ≡ n/N ≤1 Here N is a positive integer and n = 0, 1, 2, . . . , N ;

• replace the functions u(x) and g(x) by the arrays of real variables un ≡ u(xn) and

gn ≡ g(xn);

• approximate the continuum differential operator d2/dx2 by the finite difference operator

D2, defined by D2un ≡ (un+1 − 2un + un−1)/a
2 where a = N−1 is the lattice spacing.

Now do the following problems:

a) Impose continuum Dirichlet boundary conditions u(0) = u(1) = 0. Decide what these

correspond to in the discrete approximation, and write the resulting set of algebraic

equations in matrix form. Show that the corresponding matrix is real and symmetric.

b) Impose the periodic boundary conditions u(0) = u(1) and u′(0) = u′(1), and show that

these require us to set u0 ≡ uN and uN+1 ≡ u1. Again write the system of algebraic

equations in matrix form and show that the resulting matrix is real and symmetric.
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c) Consider the non-symmetric N ×N matrix operator

D2u =
1

a2





















0 0 0 0 0 . . . 0
1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1
0 . . . 0 0 0 0 0
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.

i) What vectors span the null space of D2?

ii) To what continuum boundary conditions for d2/dx2 does this matrix correspond?

iii) Consider the matrix (D2)†, To what continuum boundary conditions does this

matrix correspond? Are they the adjoint boundary conditions for the operator in

part ii)?

4) Factorization: Schrödinger equations of the form

−
d2ψ

dx2
− l(l + 1)sech2xψ = Eψ

are known as Pöschel-Teller equations . By setting u = l tanh x and following the strategy

of this problem one may relate solutions for l to those for l− 1 and so find all bound states

and scattering eigenfunctions for any integer l.

a) Suppose that we know that ψ = exp
{

−
∫

x
u(x′)dx′

}

is a solution of

Lψ ≡

(

−
d2

dx2
+W (x)

)

ψ = 0.

Show that L can be written as L = M †M where

M =

(

d

dx
+ u(x)

)

, M † =

(

−
d

dx
+ u(x)

)

,

the adjoint being taken with respect to the product 〈u|v〉 =
∫

u∗v dx.

b) Now assume L is acting on functions on [−∞,∞] and that we not have to worry about

boundary conditions. Show that given an eigenfunction ψ− obeying M †Mψ− = λψ−

we can multiply this equation on the left by M and so find a eigenfunction ψ+ with

the same eigenvalue for the differential operator

L′ = MM † =

(

d

dx
+ u(x)

) (

−
d

dx
+ u(x)

)

and vice-versa. Show that this correspondence ψ− ↔ ψ+ will fail if, and only if , λ = 0.
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c) Apply the strategy from part b) in the case u(x) = tanhx and one of the two differential

operators M †M , MM † is (up to an additive constant)

H = −
d

dx

2

− 2 sech2x.

Show that H has eigenfunctions of the form ψk = eikxP (tanhx) and eigenvalue E = k2

for any k in the range −∞ < k <∞. The function P (tanhx) is a polynomial in tanhx

which you should be able to find explicitly. By thinking about the exceptional case

λ = 0, show that H has an eigenfunction ψ0(x), with eigenvalue E = −1, that tends

rapidly to zero as x → ±∞. Observe that there is no corresponding eigenfunction for

the other operator of the pair.
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