Physics 508	Mathematical Methods in Physics I	Prof. M. Stone
Handout 4	Course Material	2117 ESB
Fall 2016	Homework 5	University of Illinois

1) Linear differential operators:

- a) Let w(x) > 0. Consider the differential operator $\hat{L} = id/dx$. Find the formal adjoint of L with respect to the inner product $\langle u|v\rangle_w = \int wu^*v \, dx$, and find the corresponding surface term Q[u, v].
- b) Now do the same for the operator $M = d^4/dx^4$, for the case w = 1. Find the adjoint boundary conditions defining the domain of M^{\dagger} for the case

$$\mathcal{D}(M) = \{y, y^{(4)} \in L^2[0, 1] : y(0) = y'''(0) = y(1) = y'''(1) = 0\}.$$

(Hint: you may find the identity

$$f^{(4)}g - fg^{(4)} = \frac{d}{dx} \left\{ f'''g - f''g' + f'g'' - fg''' \right\}$$

to be of use.)

2) Sturm-Liouville forms: By constructing appropriate weight functions convert the following common operators into Sturm-Liouville form:

a) $\hat{L} = (1 - x^2) d^2/dx^2 + [(\mu - \nu) - (\mu + \nu + 2)x] d/dx.$ b) $\hat{L} = (1 - x^2) d^2/dx^2 - 3x d/dx.$ c) $\hat{L} = d^2/dx^2 - 2x(1 - x^2)^{-1} d/dx - m^2 (1 - x^2)^{-1}.$

3) Discrete approximations and self-adjointness: Consider the second order inhomogeneous equation $Lu \equiv u'' = g(x)$ on the interval $0 \leq x \leq 1$. Here g(x) is known and u(x) is to be found. We wish to solve the problem on a computer, and so set up a discrete approximation to the ODE in the following way:

- replace the continuum of independent variables $0 \le x \le 1$ by the discrete lattice of points $0 \le x_n \equiv n/N \le 1$ Here N is a positive integer and n = 0, 1, 2, ..., N;
- replace the functions u(x) and g(x) by the arrays of real variables $u_n \equiv u(x_n)$ and $g_n \equiv g(x_n)$;
- approximate the continuum differential operator d^2/dx^2 by the finite difference operator \mathcal{D}^2 , defined by $\mathcal{D}^2 u_n \equiv (u_{n+1} 2u_n + u_{n-1})/a^2$ where $a = N^{-1}$ is the lattice spacing.

Now do the following problems:

- a) Impose continuum Dirichlet boundary conditions u(0) = u(1) = 0. Decide what these correspond to in the discrete approximation, and write the resulting set of algebraic equations in matrix form. Show that the corresponding matrix is real and symmetric.
- b) Impose the periodic boundary conditions u(0) = u(1) and u'(0) = u'(1), and show that these require us to set $u_0 \equiv u_N$ and $u_{N+1} \equiv u_1$. Again write the system of algebraic equations in matrix form and show that the resulting matrix is real and symmetric.

c) Consider the non-symmetric $N \times N$ matrix operator

$$D^{2}u = \frac{1}{a^{2}} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & -2 & 1 & 0 \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{N} \\ u_{N-1} \\ u_{N-2} \\ \vdots \\ u_{3} \\ u_{2} \\ u_{1} \end{pmatrix}$$

- i) What vectors span the null space of D^2 ?
- ii) To what continuum boundary conditions for d^2/dx^2 does this matrix correspond?
- iii) Consider the matrix $(D^2)^{\dagger}$, To what continuum boundary conditions does this matrix correspond? Are they the adjoint boundary conditions for the operator in part ii)?
- 4) Factorization: Schrödinger equations of the form

$$-\frac{d^2\psi}{dx^2} - l(l+1)\mathrm{sech}^2 x\,\psi = E\psi$$

are known as *Pöschel-Teller equations*. By setting $u = l \tanh x$ and following the strategy of this problem one may relate solutions for l to those for l - 1 and so find all bound states and scattering eigenfunctions for any integer l.

a) Suppose that we know that $\psi = \exp\left\{-\int^x u(x')dx'\right\}$ is a solution of

$$L\psi \equiv \left(-\frac{d^2}{dx^2} + W(x)\right)\psi = 0.$$

Show that L can be written as $L = M^{\dagger}M$ where

$$M = \left(\frac{d}{dx} + u(x)\right), \quad M^{\dagger} = \left(-\frac{d}{dx} + u(x)\right),$$

the adjoint being taken with respect to the product $\langle u|v\rangle = \int u^* v \, dx$.

b) Now assume L is acting on functions on $[-\infty, \infty]$ and that we not have to worry about boundary conditions. Show that given an eigenfunction ψ_- obeying $M^{\dagger}M\psi_- = \lambda\psi_$ we can multiply this equation on the left by M and so find a eigenfunction ψ_+ with the same eigenvalue for the differential operator

$$L' = MM^{\dagger} = \left(\frac{d}{dx} + u(x)\right)\left(-\frac{d}{dx} + u(x)\right)$$

and vice-versa. Show that this correspondence $\psi_{-} \leftrightarrow \psi_{+}$ will fail if, and only if, $\lambda = 0$.

c) Apply the strategy from part b) in the case $u(x) = \tanh x$ and one of the two differential operators $M^{\dagger}M$, MM^{\dagger} is (up to an additive constant)

$$H = -\frac{d^2}{dx^2} - 2\operatorname{sech}^2 x.$$

Show that H has eigenfunctions of the form $\psi_k = e^{ikx}P(\tanh x)$ and eigenvalue $E = k^2$ for any k in the range $-\infty < k < \infty$. The function $P(\tanh x)$ is a polynomial in $\tanh x$ which you should be able to find explicitly. By thinking about the exceptional case $\lambda = 0$, show that H has an eigenfunction $\psi_0(x)$, with eigenvalue E = -1, that tends rapidly to zero as $x \to \pm \infty$. Observe that there is no corresponding eigenfunction for the other operator of the pair.