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1) Flexible rod again: A flexible rod is supported near its ends by means of knife edges

that constrain its position, but not its slope or curvature. It is acted on by by a force F (x).

F(x)x=0 x=1

y

x

Simply supported rod.

The deflection of the rod is found by solving the the boundary value problem

d4y

dx4
= F (x), y(0) = y(1) = 0, y′′(0) = y′′(1) = 0.

We wish to find the Green function G(x, y) that facilitates the solution of this problem.

a) If the differential operator and domain (boundary conditions) above is denoted by L,

what is the operator and domain for L†? Is the problem self-adjoint?

b) Are there any zero-modes? Does F have to satisfy any conditions for the solution to

exist?

c) Write down the conditions, if any, obeyed by G(x, y) and its derivatives ∂xG(x, y),

∂2

xxG(x, y), ∂3

xxxG(x, y) at x = 0, x = y, and x = 1.

d) Using the conditions above, find G(x, y). (This requires some boring algebra — but if

you start from the “jump condition” and work down, it can be completed in under a

page)

e) Is your Green function symmetric (G(x, y) = G(y, x))? Is this in accord with the

self-adjointness or not of the problem? (You can use this as a check of your algebra.)

f) Write down the integral giving the general solution of the boundary value problem.

Assume, if necessary, that F (x) is in the range of the differential operator. Differentiate

your answer and see if it does indeed satisfy the differential equation and boundary

conditions.

2) Hot ring: The equation governing the steady state heat flow on thin ring of unit cir-

cumference is

−y′′ = f, 0 < x < 1, y(0) = y(1), y′(0) = y′(1).
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a) This problem has a zero mode. Find the zero mode and the consequent condition on

f(x) for a solution to exist.

b) Verify that a suitable modified Green function for the problem is

g(x, y) =
1

2
(x − y)2 −

1

2
|x − y|.

You will need to verify that g(x, y) satisfies both the differential equation and the

boundary conditions.

3) Lattice Green Functions . The k × k matrices

T1 =





















2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 2





















, T2 =





















2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 1





















represent two discrete lattice approximations to −∂2

x on a finite interval.

a) What are the boundary conditions defining the domains of the corresponding contin-

uum differential operators? [They are either Dirichlet (y = 0) or Neumann (y′ = 0)

boundary conditions.] Make sure you explain your reasoning.

b) Verify that

[T−1

1
]ij = min(i, j) −

ij

k + 1
,

[T−1

2
]ij = min(i, j).

c) Find the continuum Green functions for the boundary value problems approximated

by the matrix operators. Compare each of the matrix inverses with its corresponding

continuum Green function. Are they similar?

4) Eigenfunction expansion : We saw in class that the resolvent (Green function)

Gλ(x, x′) = (L − λ)−1

xx′ can be expanded as

(L − λ)−1

xx′ =
∑

λn

ϕn(x)ϕn(x′)

λn − λ
,

where ϕn(x) is the normalized eigenfunction corresponding to the eigenvalue λn. The resol-

vent therefore has a pole whenever λ approaches λn. Consider the case

Gω2(x, x′) =

(

−
d2

dx2
− ω2

)−1

xx′

,

with boundary conditions y(0) = y(L) = 0. Using the explicit form of Gω2(x, x′) that appears

in Homework set 0
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a) Confirm that Gω2 becomes singular at exactly those values of ω2 corresponding to

eigenvalues of − d2

dx2 .

b) Confirm that the residue of the pole (the coefficient of 1/(ω2

n − ω2)) is precisely the

product of the normalized eigenfunctions ϕn(x)ϕn(x′).
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