1) Soliton twist: A large number of unit length pendulums are suspended from a common axis and coupled together by some elastic material to form a ribbon. A single twist is then put in the ribbon as shown in the figure. (Gravity is acting downwards.)

Coupled pendulums forming a ribbon.
We treat the ribbon as continuous, so the potential-energy functional for the ribbon can be written as

$$
V[\theta]=\int_{-\infty}^{\infty}\left\{\frac{\kappa}{2}\left(\frac{\partial \theta}{\partial x}\right)^{2}+m(1-\cos \theta)\right\} d x
$$

Here $\theta(x)$ is the angle that the pendulum situated at x is making with the vertical. The parameter κ is a spring constant, and $m d x$ is the total weight (mass times g) of the pendulum bobs in the interval $d x$. We wish to find the (time independent) $\theta(x)$ that minimizes $V[\theta]$ subject to the boundary conditions $\theta(-\infty)=0$ and $\theta(+\infty)=2 \pi$.
a) Use the calculus of variations to find the equation that determines the minimum-potential-energy configuration. [5 points]
b) Solve the equation you found in part (a). (A first integral is useful.) Your $\theta(x)$ will be of the form

$$
\theta(x)=A \tan ^{-1}\left\{\exp B\left(x-x_{0}\right)\right\},
$$

where you should find explicit expressions for A, B. [15 points]

Useful:

$$
(1-\cos 2 x)=2 \sin ^{2} x, \quad \frac{d}{d x} \ln \tan (x / 2)=\frac{1}{\sin x} .
$$

2) Green function and Fredholm: Seek a solution to the equation

$$
-\frac{d^{2} y}{d x^{2}}=f(x), \quad x \in[0,1]
$$

with inhomogeneous boundary conditions $y^{\prime}(0)=F_{0}, y^{\prime}(1)=F_{1}$. Observe that the corresponding homogeneous boundary condition problem has a zero mode. Therefore the solution, if one exists, cannot be unique.
a) Show that there can be no solution to the differential equation and inhomogeneous boundary condition unless $f(x)$ satisfies the condition

$$
\int_{0}^{1} f(x) d x=F_{0}-F_{1}
$$

[5 points]
b) Let $G(x, \xi)$ denote the modified Green function

$$
G(x, \xi)= \begin{cases}\frac{1}{3}-\xi+\frac{x^{2}+\xi^{2}}{2}, & 0<x<\xi \\ \frac{1}{3}-x+\frac{x^{2}+\xi^{2}}{2}, & \xi<x<1,\end{cases}
$$

Use the Lagrange-identity method for inhomogeneous boundary conditions to deduce that if a solution exists then it necessarily obeys

$$
y(x)=\int_{0}^{1} y(\xi) d \xi+\int_{0}^{1} G(\xi, x) f(\xi) d \xi+G(1, x) F_{1}-G(0, x) F_{0}
$$

[5 points]
c) By differentiating with respect to x, show that

$$
y_{\text {tentative }}(x)=\int_{0}^{1} G(\xi, x) f(\xi) d \xi+G(1, x) F_{1}-G(0, x) F_{0}+C
$$

where C is an arbitrary constant, obeys the boundary conditions. [5 points]
d) By differentiating a second time with respect to x, show that $y_{\text {tentative }}(x)$ is a solution of the differential equation if, and only if, the condition \star is satisfied. [5 points]
3) Hankel Transforms: The orthogonality relation for the Bessel functions $J_{0}(k x), k \in$ $[0, \infty)$, on the positive real line is

$$
\int_{0}^{\infty} J_{0}\left(k_{1} x\right) J_{0}\left(k_{2} x\right) x d x=\frac{1}{k_{1}} \delta\left(k_{1}-k_{2}\right) .
$$

a) Write down the corresponding completeness relation. [5 points]
b) Given that

$$
\int_{0}^{\infty} e^{-a x} J_{0}(k x) d x=\frac{1}{\sqrt{k^{2}+a^{2}}}
$$

evaluate

$$
\int_{0}^{\infty} \frac{J_{0}(k x)}{\sqrt{x^{2}+a^{2}}} x d x . \quad[5 \text { points }]
$$

c) By using the definition

$$
J_{n}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} e^{i x \sin \theta} d \theta
$$

and by computing the two-dimensional Fourier transform of

$$
F(x, y)=\exp \left\{-\frac{a}{2}\left(x^{2}+y^{2}\right)\right\},
$$

evaluate

$$
\int_{0}^{\infty} J_{0}(k x) e^{-a x^{2} / 2} x d x . \quad[10 \text { points }]
$$

Useful:

$$
\int_{-\infty}^{\infty} \exp \left\{-\frac{a}{2} x^{2}\right\} e^{i k x} d x=\sqrt{\frac{2 \pi}{a}} \exp \left\{-\frac{1}{2 a} k^{2}\right\}
$$

4) Legendre Polynomial Normalization: The Legendre polynomials $P_{n}(x)$ may be defined by their generating function

$$
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} t^{n} P_{n}(x)
$$

You may assume that we already know that

$$
\int_{-1}^{1} P_{n}(x) P_{n^{\prime}}(x) d x=0, \quad n \neq n^{\prime}
$$

a) Evaluate the integral

$$
\int_{-1}^{1} \frac{1}{1-2 t x+t^{2}} d x . \quad[10 \text { points }]
$$

b) By expanding your result from part (a) as a power series in t and examining the coefficient of $t^{2 n}$, evaluate

$$
\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x
$$

as a rational function of n. [10 points]
Hint: You may find the (hopefully known to you!) series expansion

$$
-\ln (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

to be of use.

5) Integral Equations:

a) Solve the integral equation

$$
u(x)=f(x)+\lambda \int_{0}^{1} x^{3} y^{3} u(y) d y, \quad 0<x<1
$$

for the unknown $u(x)$ in terms of the given function $f(x)$. For what values of λ does a unique solution $u(x)$ exist without restrictions on $f(x)$? For what value $\lambda=\lambda_{0}$ does a solution exist only if $f(x)$ satisfies some condition? Using the language of the Fredholm alternative, and the range and nullspace of the relevant operators, explain what is happening when $\lambda=\lambda_{0}$. For the case $\lambda=\lambda_{0}$ find explicitly the condition on $f(x)$ and, assuming this condition is satisfied, write down the corresponding general solution for $u(x)$. Check that this solution does indeed satisfy the integral equation. [10 points].
b) Use a Laplace transform to find the solution $u(x)$ to the generalized Abel equation

$$
f(x)=\int_{0}^{x}(x-t)^{-\mu} u(t) d t, \quad 0<\mu<1
$$

where $f(x)$ is given and $f(0)=0$. Your solution will be of the form

$$
u(x)=\int_{0}^{x} K(x-t) f^{\prime}(t) d t
$$

where you should give an explicit expression for the kernel $K(x-t)$. [10 points]
(Useful Formula: $\left.\quad \int_{0}^{\infty} t^{\mu-1} e^{-p t} d t=p^{-\mu} \Gamma(\mu), \quad \mu>0.\right)$

