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This exam has four pages and five problems. Each problem is worth 20 points. Do as

many as you can. Errors will not be propagated, so make sure of each step before you go on.

1) Soliton twist: A large number of unit length pendulums are suspended from a common

axis and coupled together by some elastic material to form a ribbon. A single twist is then

put in the ribbon as shown in the figure. (Gravity is acting downwards.)

Coupled pendulums forming a ribbon.

We treat the ribbon as continuous, so the potential-energy functional for the ribbon can be

written as

V [θ] =

∫

∞

−∞

{

κ

2

(

∂θ

∂x

)2

+ m(1 − cos θ)

}

dx.

Here θ(x) is the angle that the pendulum situated at x is making with the vertical. The

parameter κ is a spring constant, and m dx is the total weight (mass times g) of the pendulum

bobs in the interval dx . We wish to find the (time independent) θ(x) that minimizes V [θ]

subject to the boundary conditions θ(−∞) = 0 and θ(+∞) = 2π.

a) Use the calculus of variations to find the equation that determines the minimum-

potential-energy configuration. [5 points]

b) Solve the equation you found in part (a). (A first integral is useful.) Your θ(x) will be

of the form

θ(x) = A tan−1{exp B(x − x0)},

where you should find explicit expressions for A, B. [15 points]

Useful:

(1 − cos 2x) = 2 sin2 x,
d

dx
ln tan(x/2) =

1

sin x
.
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2) Green function and Fredholm: Seek a solution to the equation

−d2y

dx2
= f(x), x ∈ [0, 1]

with inhomogeneous boundary conditions y′(0) = F0, y′(1) = F1. Observe that the corre-

sponding homogeneous boundary condition problem has a zero mode. Therefore the solution,

if one exists, cannot be unique.

a) Show that there can be no solution to the differential equation and inhomogeneous

boundary condition unless f(x) satisfies the condition

∫

1

0

f(x) dx = F0 − F1. (⋆)

[5 points]

b) Let G(x, ξ) denote the modified Green function

G(x, ξ) =

{

1

3
− ξ + x2+ξ2

2
, 0 < x < ξ

1

3
− x + x2+ξ2

2
, ξ < x < 1,

.

Use the Lagrange-identity method for inhomogeneous boundary conditions to deduce

that if a solution exists then it necessarily obeys

y(x) =

∫

1

0

y(ξ) dξ +

∫

1

0

G(ξ, x)f(ξ) dξ + G(1, x)F1 − G(0, x)F0.

[5 points]

c) By differentiating with respect to x, show that

ytentative(x) =

∫

1

0

G(ξ, x)f(ξ) dξ + G(1, x)F1 − G(0, x)F0 + C,

where C is an arbitrary constant, obeys the boundary conditions. [5 points]

d) By differentiating a second time with respect to x, show that ytentative(x) is a solution

of the differential equation if, and only if, the condition ⋆ is satisfied. [5 points]
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3) Hankel Transforms: The orthogonality relation for the Bessel functions J0(kx), k ∈
[0,∞), on the positive real line is

∫

∞

0

J0(k1x)J0(k2x)x dx =
1

k1

δ(k1 − k2).

a) Write down the corresponding completeness relation. [5 points]

b) Given that
∫

∞

0

e−axJ0(kx) dx =
1√

k2 + a2
,

evaluate
∫

∞

0

J0(kx)√
x2 + a2

x dx. [5 points]

c) By using the definition

Jn(x) =
1

2π

∫

2π

0

e−inθeix sin θ dθ,

and by computing the two-dimensional Fourier transform of

F (x, y) = exp
{

−a

2
(x2 + y2)

}

,

evaluate
∫

∞

0

J0(kx)e−ax2/2x dx. [10 points]

Useful:
∫

∞

−∞

exp
{

−a

2
x2

}

eikx dx =

√

2π

a
exp

{

− 1

2a
k2

}

.

4) Legendre Polynomial Normalization: The Legendre polynomials Pn(x) may be de-

fined by their generating function

1√
1 − 2tx + t2

=

∞
∑

n=0

tnPn(x).

You may assume that we already know that

∫

1

−1

Pn(x)Pn′(x) dx = 0, n 6= n′.

a) Evaluate the integral
∫

1

−1

1

1 − 2tx + t2
dx. [10 points]
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b) By expanding your result from part (a) as a power series in t and examining the

coefficient of t2n, evaluate
∫

1

−1

[Pn(x)]2 dx

as a rational function of n. [10 points]

Hint: You may find the (hopefully known to you!) series expansion

− ln(1 − x) = x +
x2

2
+

x3

3
+ . . . =

∞
∑

n=1

xn

n

to be of use.

5) Integral Equations:

a) Solve the integral equation

u(x) = f(x) + λ

∫

1

0

x3y3u(y)dy, 0 < x < 1

for the unknown u(x) in terms of the given function f(x). For what values of λ does

a unique solution u(x) exist without restrictions on f(x)? For what value λ = λ0

does a solution exist only if f(x) satisfies some condition? Using the language of the

Fredholm alternative, and the range and nullspace of the relevant operators, explain

what is happening when λ = λ0. For the case λ = λ0 find explicitly the condition on

f(x) and, assuming this condition is satisfied, write down the corresponding general

solution for u(x). Check that this solution does indeed satisfy the integral equation.

[10 points].

b) Use a Laplace transform to find the solution u(x) to the generalized Abel equation

f(x) =

∫ x

0

(x − t)−µ u(t)dt, 0 < µ < 1,

where f(x) is given and f(0) = 0. Your solution will be of the form

u(x) =

∫ x

0

K(x − t)f ′(t)dt.

where you should give an explicit expression for the kernel K(x − t). [10 points]

(Useful Formula:

∫

∞

0

tµ−1e−ptdt = p−µ Γ(µ), µ > 0.)
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