1) **Missing State**: In Homework Set 4 you found that the Schrödinger equation

\[
\left(-\frac{d^2}{dx^2} - 2 \text{sech}^2 x \right) \psi = E \psi
\]

has eigensolutions

\[
\psi_k(x) = e^{ikx}(-ik + \tanh x)
\]

with eigenvalue \(E = k^2 \).

- Show that for \(x \) large and positive \(\psi_k(x) \approx A e^{ikx} e^{i\delta(k)} \), while for \(x \) large and negative \(\psi_k(x) \approx A e^{ikx} e^{-i\delta(k)} \), the complex constant \(A \) (which you must write down explicitly) being the same in both cases. Express \(\delta(k) \) as the inverse tangent of an algebraic expression in \(k \).
- Impose periodic boundary conditions \(\psi(-L/2) = \psi(+L/2) \) where \(L \gg 1 \). Find the allowed values of \(k \) and hence an explicit expression for the \(k \)-space density, \(\rho(k) = \frac{dn}{dk} \), of the eigenstates.
- Compare your formula for \(\rho(k) \) with the corresponding expression, \(\rho_0(k) = L/2\pi \), for the eigenstate density of the zero-potential equation and compute the integral

\[
\Delta N = \int_{-\infty}^{\infty} \{ \rho(k) - \rho_0(k) \} dk.
\]

- Deduce that one eigenfunction has gone missing from the continuum and presumably become a localized bound state. (You will have found an explicit expression for this localized eigenstate in Homework Set 4.)

2) **Continuum Completeness**: Consider the differential operator

\[
\hat{L} = -\frac{d^2}{dx^2}, \quad 0 \leq x < \infty
\]

with self-adjoint boundary conditions \(\psi(0)/\psi'(0) = \tan \theta \) for some fixed angle \(\theta \).

- Show that when \(\tan \theta < 0 \) there is a single normalizable negative-eigenvalue eigenfunction localized near the origin, but none when \(\tan \theta > 0 \).
- Show that there is a continuum of positive-eigenvalue eigenfunctions of the form \(\psi_k(x) = \sin(kx + \delta(k)) \) where the phase shift \(\delta \) is found from

\[
e^{i\delta(k)} = \frac{1 + ik \tan \theta}{\sqrt{1 + k^2 \tan^2 \theta}}.
\]

- Write down (no justification required) the appropriate completeness relation

\[
\delta(x - x') = \int \frac{dn}{dk} N_k \psi_k(x) \psi_k(x') dk + \sum_{\text{bound}} \psi_n(x) \psi_n(x')
\]
with an explicit expression for the product (not the separate factors) of the density of states and the normalization constant N_k, and with the correct limits on the integral over k.

- Confirm that the ψ_k continuum on its own, or together with the bound state when it exists, form a complete set. You will do this by evaluating the integral

$$I(x, x') = \frac{2}{\pi} \int_0^\infty \sin(kx + \delta(k)) \sin(kx' + \delta(k)) \, dk$$

and interpreting the result. You will need the following standard integral

$$\int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \frac{1}{1 + k^2t^2} = \frac{1}{2|t|} e^{-|x|/|t|}.$$

To get full credit, you must show how the bound state contribution switches on and off with θ. The modulus signs are essential for this.

3) Fredholm Alternative:

A heavy elastic bar with uniform mass m per unit length lies almost horizontally. It is supported by a distribution of upward forces $F(x)$.

The shape of the bar, $y(x)$, can be found by minimizing the energy

$$U[y] = \int_0^L \left\{ \frac{1}{2} \kappa (y'')^2 - (F(x) - mg)y \right\} \, dx,$$

which gives (homework 2!) the equation

$$\hat{L}y \equiv \kappa \frac{d^4y}{dx^4} = F(x) - mg, \quad y'' = y''' = 0 \quad \text{at} \quad x = 0, L.$$

- Show that the boundary conditions are such that the operator \hat{L} is self-adjoint with respect to an inner product with weight function 1.
- Find the zero modes which span the null space of \hat{L}.
- If there are n linearly independent zero modes, then the codimension of the range of \hat{L} is also n. Using your explicit solutions from the previous part, find the conditions that must be obeyed by $F(x)$ for a solution of $\hat{L}y = F - mg$ to exist. What is the physical meaning of these conditions?
- The solution to the equation and boundary conditions is not unique. Is this non-uniqueness physically reasonable? Explain.