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These problems are designed to reactivate your mathematical skillset after a relaxing summer

break. They are not designed to be too easy!

Differential Calculus: After taking a previous version of this course, a student claimed

that the expression

y(x) =
1

ω sinωL

{∫ x

0
f(t) sinω(x− L) sinωt dt+

∫ L

x
f(t) sinωx sinω(t− L) dt

}

is the solution to the problem: “Find y(x) obeying the differential equation

d2y

dx2
+ ω2y = f(x)

on the interval [0, L] and satisfying the boundary conditions y(0) = 0 = y(L).” First examine

her solution to see if it obeys the boundary conditions. Then, by differentiating her solution

twice with respect to x and substituting the result into the differential equation, investigate

whether her solution is correct.

A second student claimed that if K(x) and f(x) are smooth functions with K(0) = 1,

and we set

F (x) =
∫ x

0
K(x− y)f(y) dy,

then

F ′(x) =
∫ x

0
K(x− y)f ′(y) dy.

(Here the “prime” denotes differentiation with respect to x or y, as appropriate.) Was he

right? If so, explain why. If not, find an extra condition on f(x) that makes his equation

correct.

Integral Calculus: Let µ > λ > 0 be real numbers. Sketch by hand a graph of the function

F (t) =
e−λt − e−µt

t
, 0 < t <∞.

Now a student wishes to evaluate the integral

I(λ, µ) =
∫ ∞

0

e−λt − e−µt

t
dt.

He breaks it up as

I(λ, µ) =
∫ ∞

0

e−λt

t
dt−

∫ ∞
0

e−µt

t
dt.
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In the first integral he makes the substitution x = λt. In the second he sets x = µt. He ends

up with

I(λ, µ) =
∫ ∞

0

e−x

x
dx−

∫ ∞
0

e−x

x
dx.

As the two integrals are identical, he concludes that they must cancel and so I(λ, µ) =

0. From your sketch of the function being integrated, you know that he has gone wrong

somewhere. Locate the error in his method, and make the small but crucial modification

that leads to the correct answer. Confirm your result by using Feynman’s trick of first

computing the easy integral for ∂I/∂µ, and then integrating the result with respect to µ.

Now use the same “small modification” technique at both ends of the integration interval,

and so easily evaluate the intimidating-looking integral

I =
∫ ∞

0
ln

{
a+ be−px

a+ be−qx

}
dx

x
.

Assume that a, b, p, q are positive real numbers.

Partial Derivatives: Suppose that you know a wavefunction ψ(x, t) obeying the time-

dependent Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ.

Now start running at velocity −U . From your viewpoint the potential is moving past you,

so in the moving frame the wavefunction ψ̃(x, t) must obey the Schrödinger equation

ih̄
∂ψ̃

∂t
= − h̄2

2m

∂2ψ̃

∂x2
+ V (x− Ut)ψ̃.

How is ψ̃ related to ψ? To find out, make a change of variables

z = x− Ut,
τ = t,

and use the chain rule for partial derivatives to express(
∂ψ̃

∂t

)
x

,

(
∂ψ̃

∂x

)
t

, in terms of

(
∂ψ̃

∂τ

)
z

,

(
∂ψ̃

∂z

)
τ

.

Use these relations to find the equation obeyed by ψ̃ as a function of z and τ . Show that you

can obtain a solution ψ̃(z, τ) to this new equation by multiplying the original ψ by a phase

factor eiφ(z,τ). Restore x and t to show that the solution to the equation with the moving

potential is

ψ̃(x, t) = eimUx/h̄−i
1
2
mU2t/h̄ψ(x− Ut, t).
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This ψ̃(x, t) must be how the original wavefunction appears when seen from the moving

frame. Evidently, Schrödinger wavefunctions do not transform as scalars under Galilean

transformations (i.e., ψ̃(x, t) 6= ψ(x− Ut, t)).

Matrix Algebra: Let V be an N -dimensional vector space, where N > 1. Consider a linear

operator T : V → V which, in some basis, is represented by an N ×N matrix. T obeys the

equation

(T − λI)p = 0,

with p = N , but does not obey this equation for any integer p < N . Here λ is a real number

and I is the identity operator.

i) Show that if T possesses an eigenvector, the corresponding eigenvalue must be λ.

Deduce that T cannot be diagonalized.

ii) Show that there exists a vector e1 such that (T − λI)Ne1 = 0, but no lesser power of

(T − λI) kills e1.

iii) Define e2 = (T − λI)e1, e3 = (T − λI)2e1, etc. up to eN . Show that the vectors

e1, . . . , eN are linearly independent. Hint: linear independence means there is no

nontrivial solution for {ci} to
∑N
i=1 ciei = 0.

iv) Use e1, . . . , eN as a basis for your vector space. Taking

e1 =


0
...
0
1

 , e2 =


0
...
1
0

 , . . . , eN =


1
0
...
0

 ,

write out the matrix representing T in the ei basis.
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