Q1 Binomial Series: Show that the binomial series expansion of $(1+x)^{-\nu}$ can be written as

$$
(1+x)^{-\nu}=\sum_{m=0}^{\infty}(-x)^{m} \frac{\Gamma(m+\nu)}{\Gamma(\nu) m!}, \quad|x|<1
$$

Q2 A Mellin transform and its inverse: Combine the Beta-function identity with a suitable change of variables to evaluate the Mellin transform

$$
\int_{0}^{\infty} x^{s-1}(1+x)^{-\nu} d x, \quad \nu>0
$$

of $(1+x)^{-\nu}$ as a product of Gamma functions. Now consider the Bromwich contour integral

$$
\frac{1}{2 \pi i \Gamma(\nu)} \int_{c-i \infty}^{c+i \infty} x^{-s} \Gamma(\nu-s) \Gamma(s) d s
$$

Here $\operatorname{Re} c \in(0, \nu)$. The contour therefore runs parallel to the imaginary axis with the poles of $\Gamma(s)$ to its left and the poles of $\Gamma(\nu-s)$ to its right. Use the identity

$$
\Gamma(s) \Gamma(1-s)=\pi \operatorname{cosec} \pi s
$$

to show that when $|x|<1$ the contour can be closed by a large semicircle lying to the left of the imaginary axis. By using the preceding exercise to sum the contributions from the enclosed poles at $s=-n$, evaluate the integral and so verify that the Bromwich contour provides the inverse of the Mellin transform in this case.

Q3 Mellin-Barnes integral.: Use the technique developed in the preceding exercise to show that

$$
F(a, b, c ;-x)=\frac{\Gamma(c)}{2 \pi i \Gamma(a) \Gamma(b)} \int_{c-i \infty}^{c+i \infty} x^{-s} \frac{\Gamma(a-s) \Gamma(b-s) \Gamma(s)}{\Gamma(c-s)} d s
$$

for a suitable range of x. This integral representation of the hypergeometric function is due to the English mathematician Ernest Barnes (1908), later a controversial Bishop of Birmingham.

Q4 Conformal block equation: Let

$$
Y=\binom{y_{1}}{y_{2}}
$$

Show that the matrix differential equation

$$
\frac{d}{d x} Y=\frac{A}{z} Y+\frac{B}{1-z} Y
$$

where

$$
A=\left(\begin{array}{cc}
0 & a \\
0 & 1-c
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 0 \\
b & a+b-c+1
\end{array}\right)
$$

has a solution

$$
Y(z)=F(a, b, ; c, z)\binom{1}{0}+\frac{z}{a} F^{\prime}(a, b ; c ; z)\binom{0}{1} .
$$

(This result is useful in conformal field theory)

