1) Lie Bracket Geometry: Consider the vector fields $X=y \partial_{x}, Y=\partial_{y}$ in \mathbb{R}^{2}. Find the flows associated with these fields, and use them to verify the statements made in the lecture about the geometric interpretation of the Lie bracket.
2) Frobenius' theorem: Show that the pair of vector fields $L_{z}=x \partial_{y}-y \partial_{x}$ and $L_{y}=$ $z \partial_{x}-x \partial_{z}$ in \mathbb{R}^{3} is in involution. Show further that the general solution of the system of partial differential equations

$$
\begin{aligned}
& \left(x \partial_{y}-y \partial_{x}\right) f=0 \\
& \left(x \partial_{z}-z \partial_{x}\right) f=0
\end{aligned}
$$

in \mathbb{R}^{3} is $f(x, y, z)=F\left(x^{2}+y^{2}+z^{2}\right)$, where F is an arbitrary function.
3) Rolling ball: In class we mentioned the rolling conditions for a ball on a table:

$$
\begin{aligned}
\dot{x} & =\dot{\psi} \sin \theta \sin \phi+\dot{\theta} \cos \phi \\
\dot{y} & =-\dot{\psi} \sin \theta \cos \phi+\dot{\theta} \sin \phi, \quad(\star) \\
0 & =\dot{\psi} \cos \theta+\dot{\phi}
\end{aligned}
$$

Here, we are using the " Y " convention for Euler angles. In this convention θ and ϕ are the usual spherical polar co-ordinate angles with respect to the space-fixed $x y z$ axes. They specify the direction of the body-fixed Z axis about which we make the final ψ rotation.

Euler angles: we first rotate the ball through an angle ϕ about the z axis, thus taking $y \rightarrow Y^{\prime}$, then through θ about Y^{\prime}, and finally through ψ about Z, so taking $Y^{\prime} \rightarrow Y$.
a) Show that (\star) are indeed the no-slip rolling conditions

$$
\begin{aligned}
\dot{x} & =\omega_{y}, \\
\dot{y} & =-\omega_{x}, \\
0 & =\omega_{z},
\end{aligned}
$$

where $\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ are the components of the ball's angular velocity in the $x y z$ spacefixed frame.
b) Solve the three constraints (\star) so as to obtain the vector fields

$$
\begin{aligned}
\operatorname{roll}_{\mathbf{x}} & =\partial_{x}-\sin \phi \cot \theta \partial_{\phi}+\cos \phi \partial_{\theta}+\operatorname{cosec} \theta \sin \phi \partial_{\psi} \\
\operatorname{roll}_{\mathbf{y}} & =\partial_{y}+\cos \phi \cot \theta \partial_{\phi}+\sin \phi \partial_{\theta}-\operatorname{cosec} \theta \cos \phi \partial_{\psi}
\end{aligned}
$$

c) Show that

$$
\left[\operatorname{roll}_{\mathrm{x}}, \operatorname{roll}_{\mathrm{y}}\right]=-\operatorname{spin}_{\mathrm{z}}
$$

where $\operatorname{spin}_{\mathbf{z}} \equiv \partial_{\phi}$, corresponds to a rotation about a vertical axis through the point of contact. This is a new motion, being forbidden by the $\omega_{z}=0$ condition.
d) Show that

$$
\begin{aligned}
& {\left[\operatorname{spin}_{\mathrm{z}}, \operatorname{roll}_{\mathrm{x}}\right]=\operatorname{spin}_{\mathrm{x}}} \\
& {\left[\operatorname{spin}_{\mathrm{z}}, \operatorname{roll}_{\mathrm{y}}\right]=\operatorname{spin}_{\mathrm{y}}}
\end{aligned}
$$

where the new vector fields

$$
\begin{aligned}
& \operatorname{spin}_{\mathrm{x}} \equiv-\left(\operatorname{roll}_{\mathbf{y}}-\partial_{y}\right) \\
& \operatorname{spin}_{\mathbf{y}} \equiv\left(\operatorname{roll}_{\mathbf{x}}-\partial_{x}\right),
\end{aligned}
$$

correspond to rotations of the ball about the space-fixed x and y axes through its centre, and with the centre of mass held fixed.
We have generated five independent vector fields from the original two. Therefore, by sufficient rolling to-and-fro, we can position the ball anywhere on the table, and in any orientation.
4) Killing Vector: The metric on the unit sphere equipped with polar co-ordinates is

$$
g(, \quad)=d \theta \otimes d \theta+\sin ^{2} \theta d \phi \otimes d \phi
$$

Consider

$$
V_{x}=-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi},
$$

the vector field of a rigid rotation about the x axis. Compute the Lie derivative $\mathcal{L}_{V_{x}} g$, and show that it is zero.

