1) Infinitesimal Homotopy: Use the infinitesimal homotopy relation to show that the Lie derivative \mathcal{L} commutes with the exterior derivative d, i.e. for ω a p-form, we have

$$
d\left(\mathcal{L}_{X} \omega\right)=\mathcal{L}_{X}(d \omega)
$$

2) Magnetic solid: The semi-classical dynamics of charge $-e$ electrons in a magnetic solid are governed by the equations

$$
\begin{aligned}
\dot{\mathbf{r}} & =\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}-\dot{\mathbf{k}} \times \boldsymbol{\Omega} \\
\dot{\mathbf{k}} & =-\frac{\partial V}{\partial \mathbf{r}}-e \dot{\mathbf{r}} \times \mathbf{B}
\end{aligned}
$$

Here \mathbf{k} is the Bloch momentum of the electron, \mathbf{r} is its position, $\epsilon(\mathbf{k})$ its band energy (in the extended-zone scheme), and $\mathbf{B}(\mathbf{r})$ is the external magnetic field. The components Ω_{i} of the Berry curvature $\boldsymbol{\Omega}(\mathbf{k})$ are given in terms of the periodic part $|u(\mathbf{k})\rangle$ of the Bloch wavefunctions of the band by

$$
\Omega_{i}(\mathbf{k})=i \epsilon_{i j k} \frac{1}{2}\left(\left\langle\left.\frac{\partial u}{\partial k_{j}} \right\rvert\, \frac{\partial u}{\partial k_{k}}\right\rangle-\left\langle\left.\frac{\partial u}{\partial k_{k}} \right\rvert\, \frac{\partial u}{\partial k_{j}}\right\rangle\right) .
$$

The only property of $\boldsymbol{\Omega}$ needed for the present problem, however, is that $\operatorname{div}_{\mathbf{k}} \boldsymbol{\Omega}=0$.
a) Show that these equations are Hamiltonian, with

$$
H(\mathbf{r}, \mathbf{k})=\epsilon(\mathbf{k})+V(\mathbf{r})
$$

and

$$
\omega=d k_{i} d x_{i}-\frac{e}{2} \epsilon_{i j k} B_{i}(\mathbf{r}) d x_{j} d x_{k}+\frac{1}{2} \epsilon_{i j k} \Omega_{i}(\mathbf{k}) d k_{j} d k_{k} .
$$

as the symplectic form.
b) Confirm that the ω defined in part b) is closed, and that the Poisson brackets are given by

$$
\begin{aligned}
\left\{x_{i}, x_{j}\right\} & =\frac{\epsilon_{i j k} \Omega_{k}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})} \\
\left\{x_{i}, k_{j}\right\} & =-\frac{\delta_{i j}+e \Omega_{i} B_{j}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})} \\
\left\{k_{i}, k_{j}\right\} & =+\frac{\epsilon_{i j k} e B_{k}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})} .
\end{aligned}
$$

c) Show that the conserved phase-space volume $\omega^{3} / 3$! is equal to

$$
(1+e \mathbf{B} \cdot \boldsymbol{\Omega}) d^{3} k d^{3} x,
$$

instead of the textbook $d^{3} k d^{3} x$.
3) Non-abelian gauge fields as matrix-valued forms: In a non-abelian gauge theory, such as QCD, the vector potential

$$
A=A_{\mu} d x^{\mu}
$$

becomes matrix-valued, meaning that the components, A_{μ}, are matrices that do not necessarily commute with each other. The matrix-valued field-strength F is a 2-form defined by

$$
F=d A+A^{2}=\frac{1}{2} F_{\mu \nu} d x^{\mu} d x^{\nu} .
$$

Here, a combined matrix and wedge product is to be understood:

$$
\left(A^{2}\right)_{i k} \equiv \sum_{j} A_{i j} \wedge A_{j k}=\sum_{j} A_{i j ; \mu} A_{j k ; \nu} d x^{\mu} d x^{\nu}
$$

i) Show that $A^{2}=\frac{1}{2}\left[A_{\mu}, A_{\nu}\right] d x^{\mu} d x^{\nu}$, and hence show that

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] .
$$

ii) Define gauge-covariant derivatives

$$
\nabla_{\mu}=\partial_{\mu}+A_{\mu}
$$

and show that the commutator of two of these is equal to

$$
\left[\nabla_{\mu}, \nabla_{\nu}\right]=F_{\mu \nu}
$$

iii) Let g be an invertable matrix, and δg a matrix describing a small change in g. Show that the corresponding change in the inverse matrix is given by $\delta\left(g^{-1}\right)=-g^{-1}(\delta g) g^{-1}$.
iv) Show that a necessary condition for the matrix-valued gauge field A to be "pure gauge", i.e. for there to be a position dependent matrix g such that $A=g^{-1} d g$, is that $F=0$.
v) Show that under the gauge transformation

$$
A \rightarrow A^{g} \equiv g^{-1} A g+g^{-1} d g
$$

we have $F \rightarrow g^{-1} F g$. (Hint: The labour is minimized by exploiting the covariant derivative identity in ii)).
vi) Show that F obeys the Bianchi identity

$$
d F-F A+A F=0 .
$$

This equation is the non-abelian version of the source-free Maxwell equations.
vii) Show that, in any number of dimensions, the Bianchi identity implies that the 4 -form $\operatorname{tr}\left(F^{2}\right)$ is closed, i.e. that $d \operatorname{tr}\left(F^{2}\right)=0$. (The trace is being taken only over the matrix indices.)
viii) Show that,

$$
\operatorname{tr}\left(F^{2}\right)=d\left\{\operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)\right\}
$$

so that if $\int_{\Omega} \operatorname{tr}\left(F^{2}\right) \neq 0$, and $\partial \Omega=\emptyset$, then there cannot be a globally-defined A on the region Ω. The 3 -form $\operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)$ is called a Chern-Simons form.
When the gauge group is $\mathrm{SU}(n)$, the integral

$$
c_{2}(A)=\frac{1}{8 \pi^{2}} \int_{\mathbf{R}^{4}} \operatorname{tr}\left(F^{2}\right)
$$

is an integer-valued topological invariant called the Chern number, or instanton number, of the gauge field configuration A.

The $2 n$-forms $\operatorname{tr}\left(F^{n}\right)$ are also closed, and can locally be written as the d of $(2 n-1)$-form generalizations of the Chern-Simons form.

