Handout 7 https://courses.physics.illinois.edu/phys509/sp2022/
2117 ESB
Spring 2023
Homework set 7.
University of Illinois

1) Buckyball spectrum.: Consider the symmetry group of the C_{60} buckyball molecule illustrated on page 194 of the notes.
a) Starting from the character table of the orientation-preserving icosohedral group Y (table 5.3), and using the fact that the \mathbb{Z}_{2} parity inversion $\sigma: \mathbf{r} \rightarrow-\mathbf{r}$ combines with $g \in Y$ so that $D^{J_{g}}(\sigma g)=D^{J_{g}}(g)$, whilst $D^{J_{u}}(\sigma g)=-D^{J_{u}}(g)$, write down the character table of the extended group $Y_{h}=Y \times \mathbb{Z}_{2}$ that acts as a symmetry on the C_{60} molecule. There are now ten conjugacy classes, and the ten representations will be labelled A_{g}, A_{u}, etc. Verify that your character table has the expected row-orthogonality properties.
b) By counting the number of atoms left fixed by each group operation, compute the compound character of the action of Y_{h} on the C_{60} molecule. (Hint: Examine the pattern of panels on a regulation soccer ball, and deduce that four carbon atoms are left unmoved by operations in the class σC_{2}.)
c) Use your compound character from part b), to show that the 60-dimensional Hillbert space decomposes as

$$
\mathcal{H}_{\mathrm{C}_{60}}=A_{g} \oplus T_{1 g} \oplus 2 T_{1 u} \oplus T_{2 g} \oplus 2 T_{2 u} \oplus 2 G_{g} \oplus 2 G_{u} \oplus 3 H_{g} \oplus 2 H_{u}
$$

consistent with the energy-levels sketched in figure 5.3.

2) Matrix commutators:

a) Let $\hat{\lambda}_{1}$ and $\hat{\lambda}_{2}$ be hermitian matrices. Show that if we define $\hat{\lambda}_{3}$ by the relation $\left[\hat{\lambda}_{1}, \hat{\lambda}_{2}\right]=$ $i \hat{\lambda}_{3}$, then $\hat{\lambda}_{3}$ is also a hermitian matrix.
b) For the Lie group $\mathrm{O}(n)$, the matrices " $i \hat{\lambda}$ " are real n-by- n skew symmetric matrices. Show that if A_{1} and A_{2} are real skew symmetric matrices, then so is $\left[A_{1}, A_{2}\right]$.
c) For the Lie group $\operatorname{Sp}(2 n, \mathbb{R})$, the $i \hat{\lambda}$ matrices are of the form

$$
A=\left(\begin{array}{cc}
a & b \\
c & -a^{T}
\end{array}\right)
$$

where a is a real n-by- n matrix and b and c are symmetric ($a^{T}=a$ and $b^{T}=b$) real n-by- n matrices. Show that the commutator of any two matrices of this form is also of this form.
3 Euler angles and $\mathbf{S U}(2)$: Parametrize the elements of $\mathrm{SU}(2)$ as

$$
\begin{aligned}
U & =\exp \left\{-i \phi \hat{\sigma}_{3} / 2\right\} \exp \left\{-i \theta \hat{\sigma}_{2} / 2\right\} \exp \left\{-i \psi \hat{\sigma}_{3} / 2\right\} \\
& =\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)\left(\begin{array}{cc}
e^{-i \psi / 2} & 0 \\
0 & e^{i \psi / 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-i(\phi+\psi) / 2} \cos \theta / 2 & -e^{i(\psi-\phi) / 2} \sin \theta / 2 \\
e^{i(\phi-\psi) / 2} \sin \theta / 2 & e^{+i(\psi+\phi) / 2} \cos \theta / 2
\end{array}\right)
\end{aligned}
$$

a) Show that Hopf : $S^{3} \rightarrow S^{2}$ is the projection of $S^{3} \simeq \mathrm{SU}(2)$ onto the coset space $S^{2} \simeq \mathrm{SU}(2) / \mathrm{U}(1)$, where $\mathrm{U}(1)$ is the subgroup $\left\{\exp \left(-i \psi \hat{\sigma}_{3} / 2\right)\right\}$.. Concude that Hopf takes $\theta, \phi, \psi) \rightarrow(\theta, \phi)$, where θ and ϕ are spherical polar co-ordinates on the twosphere.
b) Show that

$$
U^{-1} d U=-\frac{i}{2} \hat{\sigma}_{i} \Omega_{\mathrm{L}}^{i}
$$

where

$$
\begin{aligned}
\Omega_{\mathrm{L}}^{1} & =\sin \psi d \theta-\sin \theta \cos \psi d \phi \\
\Omega_{\mathrm{L}}^{2} & =\cos \psi d \theta+\sin \theta \sin \psi d \phi \\
\Omega_{\mathrm{L}}^{3} & =d \psi+\cos \theta d \phi
\end{aligned}
$$

Compare these 1-forms with the components

$$
\begin{aligned}
\omega_{X} & =\sin \psi \dot{\theta}-\sin \theta \cos \psi \dot{\phi} \\
\omega_{Y} & =\cos \psi \dot{\theta}-\sin \theta \sin \psi \dot{\phi} \\
\omega_{Z} & =\dot{\psi}+\cos \theta \dot{\phi}
\end{aligned}
$$

of the angular velocity $\boldsymbol{\omega}$ of a body with respect to the body-fixed $X Y Z$.
c) (Optional) Now show that

$$
d U U^{-1}=-\frac{i}{2} \hat{\sigma}_{i} \Omega_{\mathrm{R}}^{i}
$$

where

$$
\begin{aligned}
\Omega_{\mathrm{R}}^{1} & =-\sin \phi d \theta+\sin \theta \cos \psi d \psi \\
\Omega_{\mathrm{R}}^{2} & =\cos \phi d \theta+\sin \theta \sin \psi d \psi, \\
\Omega_{\mathrm{R}}^{3} & =d \phi+\cos \theta d \psi,
\end{aligned}
$$

Compare these 1-forms with components $\omega_{x}, \omega_{y}, \omega_{z}$ of the same angular velocity vector $\boldsymbol{\omega}$, but now with respect to the space-fixed $x y z$ frame.

4) Class and group volume:

a) In the lecture notes I claimed that the volume fraction of the group $\mathrm{SU}(2)$ occupied by rotations through angles lying between θ and $\theta+d \theta$ is $\sin ^{2}(\theta / 2) d \theta / \pi$. By considering the geometry of the three-sphere, show that this is correct.
b) Show that

$$
\int_{\mathrm{SU}(2)} \operatorname{tr}\left[\left(U^{-1} d U\right)^{3}\right]=24 \pi^{2}
$$

c) Suppose we have a map $g: \mathbb{R}^{3} \rightarrow \mathrm{SU}(2)$ such that $g(x)$ goes to the identity element at infinity. Consider the integral

$$
S[g]=\frac{1}{24 \pi^{2}} \int_{\mathbb{R}^{3}} \operatorname{tr}\left[\left(g^{-1} d g\right)^{3}\right]
$$

where the 3 -form $\operatorname{tr}\left(g^{-1} d g\right)^{3}$ is the pull-back to \mathbb{R}^{3} of the form $\operatorname{tr}\left[\left(U^{-1} d U\right)^{3}\right]$ on $\mathrm{SU}(2)$. Show that if we vary $g \rightarrow g+\delta g$, then

$$
\delta S[g]=\frac{1}{24 \pi^{2}} \int_{\mathbb{R}^{3}} d\left\{3 \operatorname{tr}\left[\left(g^{-1} \delta g\right)\left(g^{-1} d g\right)^{2}\right]\right\}=0
$$

and so $S[g]$ is topological invariant of the map g. Conclude that the functional $S[g]$ is an integer, that integer being the Brouwer degree, or winding number, of the map $g: S^{3} \rightarrow S^{3}$.
5) Campbell-Baker-Hausdorff Formulae: Here are some useful formula for working with exponentials of matrices that do not commute with each other.
a) Let X and X be matrices. Show that

$$
e^{t X} Y e^{-t X}=Y+t[X, Y]+\frac{1}{2} t^{2}[X,[X, Y]]+\cdots,
$$

the terms on the right being the series expansion of $\exp [\operatorname{ad}(t X)] Y$. A proof is sketched in a footnote in the lecture notes, but I want you to fill in the details.
b) Let X and δX be matrices. Show that

$$
\begin{aligned}
e^{-X} e^{X+\delta X} & =1+\int_{0}^{1} e^{-t X} \delta X e^{t X} d t+O\left[(\delta X)^{2}\right] \\
& =1+\delta X-\frac{1}{2}[X, \delta X]+\frac{1}{3!}[X,[X, \delta X]]+\cdots \\
& =1+\left(\frac{1-e^{-\operatorname{ad}(X)}}{\operatorname{ad}(X)}\right) \delta X+O\left[(\delta X)^{2}\right]
\end{aligned}
$$

c) By expanding out the exponentials, show that

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]+\text { higher }}
$$

where "higher" means terms higher order in X, Y. The next two terms are, in fact, $\frac{1}{12}[X,[X, Y]]+\frac{1}{12}[Y,[Y, X]]$.
6) $\mathrm{SU}(3)$: Here are some simple results that come from playing with the Gell-Mann lambda matrices, as well as practice at decomposing tensor products.

The totally antisymmetric structure constants, $f_{i j k}$, and a set of totally symmetric constants $d_{i j k}$ are defined by

$$
f_{i j k}=\frac{1}{2} \operatorname{tr}\left(\lambda_{i}\left[\lambda_{j}, \lambda_{k}\right]\right), \quad d_{i j k}=\frac{1}{2} \operatorname{tr}\left(\lambda_{i}\left\{\lambda_{j}, \lambda_{k}\right\}\right) .
$$

Let $D_{i j}^{8}(g)$ be the matrices representing $\mathrm{SU}(3)$ in " 8 " - the eight-dimensional adjoint representation.
a) Show that

$$
\begin{align*}
f_{i j k} & =D_{i l}^{8}(g) D_{j m}^{8}(g) D_{k n}^{8}(g) f_{l m n}, \\
d_{i j k} & =D_{i l}^{8}(g) D_{j m}^{8}(g) D_{k n}^{8}(g) d_{l m n}, \tag{1}
\end{align*}
$$

and so $f_{i j k}$ and $d_{i j k}$ are invariant tensors in the same sense that $\delta_{i j}$ and $\epsilon_{i_{1} \ldots i_{n}}$ are invariant tensors for $\mathrm{SO}(n)$.
b) Let $w_{i}=f_{i j k} u_{j} v_{k}$. Show that if $u_{i} \rightarrow D_{i j}^{8}(g) u_{j}$ and $v_{i} \rightarrow D_{i j}^{8}(g) v_{j}$, then $w_{i} \rightarrow D_{i j}^{8}(g) w_{j}$. Similarly for $w_{i}=d_{i j k} u_{j} v_{k}$. (Hint: show first that the D^{8} matrices are real and orthogonal.) Deduce that $f_{i j k}$ and $d_{i j k}$ are Clebsh-Gordan coefficients for the $8 \oplus 8$ part of the decomposition

$$
8 \otimes 8=1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27
$$

a) Similarly show that $\delta_{\alpha \beta}$ and the lambda matrices $\left(\lambda_{i}\right)_{\alpha \beta}$ can be regarded as ClebschGordan coefficients for the decomposition

$$
3 \otimes \overline{3}=1 \oplus 8
$$

d) Use the graphical method, introduced in class, of plotting weights and pealing off irreps to obtain the tensor product decomposition in part b).

