Physics 509	Mathematical Methods in Physics	Prof. M. Stone
Handout 7	https://courses.physics.illinois.edu/phys509/sp2022/	2117 ESB
Spring 2023	Homework set 7.	University of Illinois

1) Buckyball spectrum.: Consider the symmetry group of the C_{60} buckyball molecule illustrated on page 194 of the notes.

- a) Starting from the character table of the orientation-preserving icosohedral group Y (table 5.3), and using the fact that the \mathbb{Z}_2 parity inversion $\sigma : \mathbf{r} \to -\mathbf{r}$ combines with $g \in Y$ so that $D^{J_g}(\sigma g) = D^{J_g}(g)$, whilst $D^{J_u}(\sigma g) = -D^{J_u}(g)$, write down the character table of the extended group $Y_h = Y \times \mathbb{Z}_2$ that acts as a symmetry on the C₆₀ molecule. There are now ten conjugacy classes, and the ten representations will be labelled A_g , A_u , etc. Verify that your character table has the expected row-orthogonality properties.
- b) By counting the number of atoms left fixed by each group operation, compute the compound character of the action of Y_h on the C₆₀ molecule. (Hint: Examine the pattern of panels on a regulation soccer ball, and deduce that four carbon atoms are left unmoved by operations in the class σC_2 .)
- c) Use your compound character from part b), to show that the 60-dimensional Hillbert space decomposes as

$$\mathcal{H}_{\mathcal{C}_{60}} = A_g \oplus T_{1g} \oplus 2T_{1u} \oplus T_{2g} \oplus 2T_{2u} \oplus 2G_g \oplus 2G_u \oplus 3H_g \oplus 2H_u,$$

consistent with the energy-levels sketched in figure 5.3.

2) Matrix commutators:

- a) Let $\hat{\lambda}_1$ and $\hat{\lambda}_2$ be hermitian matrices. Show that if we define $\hat{\lambda}_3$ by the relation $[\hat{\lambda}_1, \hat{\lambda}_2] = i\hat{\lambda}_3$, then $\hat{\lambda}_3$ is also a hermitian matrix.
- b) For the Lie group O(n), the matrices " $i\hat{\lambda}$ " are real *n*-by-*n* skew symmetric matrices. Show that if A_1 and A_2 are real skew symmetric matrices, then so is $[A_1, A_2]$.
- c) For the Lie group $\operatorname{Sp}(2n,\mathbb{R})$, the $i\hat{\lambda}$ matrices are of the form

$$A = \begin{pmatrix} a & b \\ c & -a^T \end{pmatrix}$$

where a is a real n-by-n matrix and b and c are symmetric $(a^T = a \text{ and } b^T = b)$ real n-by-n matrices. Show that the commutator of any two matrices of this form is also of this form.

3 Euler angles and SU(2): Parametrize the elements of SU(2) as

$$U = \exp\{-i\phi\hat{\sigma}_3/2\}\exp\{-i\theta\hat{\sigma}_2/2\}\exp\{-i\psi\hat{\sigma}_3/2\},$$

$$= \begin{pmatrix} e^{-i\phi/2} & 0\\ 0 & e^{i\phi/2} \end{pmatrix} \begin{pmatrix} \cos\theta/2 & -\sin\theta/2\\ \sin\theta/2 & \cos\theta/2 \end{pmatrix} \begin{pmatrix} e^{-i\psi/2} & 0\\ 0 & e^{i\psi/2} \end{pmatrix}$$

$$= \begin{pmatrix} e^{-i(\phi+\psi)/2}\cos\theta/2 & -e^{i(\psi-\phi)/2}\sin\theta/2\\ e^{i(\phi-\psi)/2}\sin\theta/2 & e^{+i(\psi+\phi)/2}\cos\theta/2 \end{pmatrix}.$$

- a) Show that Hopf : $S^3 \to S^2$ is the projection of $S^3 \simeq SU(2)$ onto the coset space $S^2 \simeq SU(2)/U(1)$, where U(1) is the subgroup $\{\exp(-i\psi\hat{\sigma}_3/2)\}$. Concude that Hopf takes $(\theta, \phi, \psi) \to (\theta, \phi)$, where θ and ϕ are spherical polar co-ordinates on the two-sphere.
- b) Show that

$$U^{-1}dU = -\frac{i}{2}\hat{\sigma}_i \,\Omega^i_{\rm L},$$

where

$$\begin{split} \Omega^{1}_{\mathrm{L}} &= \sin \psi \, d\theta - \sin \theta \cos \psi \, d\phi, \\ \Omega^{2}_{\mathrm{L}} &= \cos \psi \, d\theta + \sin \theta \sin \psi \, d\phi, \\ \Omega^{3}_{\mathrm{L}} &= d\psi + \cos \theta \, d\phi. \end{split}$$

Compare these 1-forms with the components

$$\omega_X = \sin \psi \dot{\theta} - \sin \theta \cos \psi \dot{\phi},$$

$$\omega_Y = \cos \psi \dot{\theta} - \sin \theta \sin \psi \dot{\phi},$$

$$\omega_Z = \dot{\psi} + \cos \theta \dot{\phi}.$$

of the angular velocity $\boldsymbol{\omega}$ of a body with respect to the *body-fixed XYZ*.

c) (Optional) Now show that

$$dUU^{-1} = -\frac{i}{2}\hat{\sigma}_i \,\Omega^i_{\rm R}$$

where

$$\begin{split} \Omega^{1}_{\mathrm{R}} &= -\sin\phi \, d\theta + \sin\theta \cos\psi \, d\psi, \\ \Omega^{2}_{\mathrm{R}} &= \cos\phi \, d\theta + \sin\theta \sin\psi \, d\psi, \\ \Omega^{3}_{\mathrm{R}} &= d\phi + \cos\theta \, d\psi, \end{split}$$

Compare these 1-forms with components ω_x , ω_y , ω_z of the same angular velocity vector $\boldsymbol{\omega}$, but now with respect to the *space-fixed xyz* frame.

4) Class and group volume:

- a) In the lecture notes I claimed that the volume fraction of the group SU(2) occupied by rotations through angles lying between θ and $\theta + d\theta$ is $\sin^2(\theta/2)d\theta/\pi$. By considering the geometry of the three-sphere, show that this is correct.
- b) Show that

$$\int_{\mathrm{SU}(2)} \mathrm{tr}\left[(U^{-1} dU)^3 \right] = 24\pi^2.$$

c) Suppose we have a map $g: \mathbb{R}^3 \to \mathrm{SU}(2)$ such that g(x) goes to the identity element at infinity. Consider the integral

$$S[g] = \frac{1}{24\pi^2} \int_{\mathbb{R}^3} \operatorname{tr} \left[(g^{-1} dg)^3 \right],$$

where the 3-form tr $(g^{-1}dg)^3$ is the pull-back to \mathbb{R}^3 of the form tr $[(U^{-1}dU)^3]$ on SU(2). Show that if we vary $g \to g + \delta g$, then

$$\delta S[g] = \frac{1}{24\pi^2} \int_{\mathbb{R}^3} d\left\{ 3 \operatorname{tr} \left[(g^{-1} \delta g) (g^{-1} dg)^2 \right] \right\} = 0,$$

and so S[g] is topological invariant of the map g. Conclude that the functional S[g] is an integer, that integer being the Brouwer degree, or winding number, of the map $g: S^3 \to S^3$.

5) Campbell-Baker-Hausdorff Formulae: Here are some useful formula for working with exponentials of matrices that do not commute with each other.

a) Let X and X be matrices. Show that

$$e^{tX}Ye^{-tX} = Y + t[X,Y] + \frac{1}{2}t^2[X,[X,Y]] + \cdots$$

the terms on the right being the series expansion of $\exp[\operatorname{ad}(tX)]Y$. A proof is sketched in a footnote in the lecture notes, but I want you to fill in the details.

b) Let X and δX be matrices. Show that

$$e^{-X}e^{X+\delta X} = 1 + \int_0^1 e^{-tX}\delta X e^{tX} dt + O\left[(\delta X)^2\right] \\ = 1 + \delta X - \frac{1}{2}[X, \delta X] + \frac{1}{3!}[X, [X, \delta X]] + \cdots \\ = 1 + \left(\frac{1 - e^{-\operatorname{ad}(X)}}{\operatorname{ad}(X)}\right)\delta X + O\left[(\delta X)^2\right]$$

c) By expanding out the exponentials, show that

$$e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y] + \text{higher}}$$

where "higher" means terms higher order in X, Y. The next two terms are, in fact, $\frac{1}{12}[X, [X, Y]] + \frac{1}{12}[Y, [Y, X]].$

6) SU(3): Here are some simple results that come from playing with the Gell-Mann lambda matrices, as well as practice at decomposing tensor products.

The totally antisymmetric structure constants, f_{ijk} , and a set of totally symmetric constants d_{ijk} are defined by

$$f_{ijk} = \frac{1}{2} \operatorname{tr} \left(\lambda_i [\lambda_j, \lambda_k] \right), \qquad d_{ijk} = \frac{1}{2} \operatorname{tr} \left(\lambda_i \{\lambda_j, \lambda_k\} \right).$$

Let $D_{ij}^8(g)$ be the matrices representing SU(3) in "8" — the eight-dimensional adjoint representation.

a) Show that

$$f_{ijk} = D_{il}^{8}(g)D_{jm}^{8}(g)D_{kn}^{8}(g)f_{lmn},$$

$$d_{ijk} = D_{il}^{8}(g)D_{jm}^{8}(g)D_{kn}^{8}(g)d_{lmn},$$
(1)

and so f_{ijk} and d_{ijk} are *invariant tensors* in the same sense that δ_{ij} and $\epsilon_{i_1...i_n}$ are invariant tensors for SO(n).

b) Let $w_i = f_{ijk}u_jv_k$. Show that if $u_i \to D_{ij}^8(g)u_j$ and $v_i \to D_{ij}^8(g)v_j$, then $w_i \to D_{ij}^8(g)w_j$. Similarly for $w_i = d_{ijk}u_jv_k$. (Hint: show first that the D^8 matrices are real and orthogonal.) Deduce that f_{ijk} and d_{ijk} are Clebsh-Gordan coefficients for the $8 \oplus 8$ part of the decomposition

$$8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27.$$

a) Similarly show that $\delta_{\alpha\beta}$ and the lambda matrices $(\lambda_i)_{\alpha\beta}$ can be regarded as Clebsch-Gordan coefficients for the decomposition

$$3\otimes\bar{3}=1\oplus 8.$$

d) Use the graphical method, introduced in class, of plotting weights and pealing off irreps to obtain the tensor product decomposition in part b).