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Q1 Contour Integration: Use the calculus of residues to evaluate the following integrals:

I1 =

∫ 2π

0

dθ

(a + b cos θ)2
, 0 < b < a.

I2 =

∫ 2π

0

cos2 3θ

1− 2a cos 2θ + a2
dθ, 0 < a < 1.

I3 =

∫ ∞

0

xα

(1 + x2)2
dx, −1 < α < 2.

(These are not meant to be easy! You will have to dig for the residues.)

Q2 Lattice Matsubara sums: Show that, for suitable functions f(z), the sum

S =
1

N

∑

ωN+1=0

f(ω)

of the values of f(z) at the N -th roots of (−1) can be written as an integral

S =
1

2πi

∫

C

dz

z

zN

zN + 1
f(z).

Here C consists of a pair of oppositely oriented concentric circles. The annulus formed by

the circles should include all the roots of unity, but exclude all singularites of f . Use this

result to show that, for N even,

1

N

N−1∑

n=0

sinhE

sinh2E + sin2 (2n+1)π
N

=
1

coshE
tanh

NE

2
. (⋆)

Take the N → ∞ limit while scaling E → 0 in some suitable manner, and hence show that

∞∑

n=−∞

a

a2 + [(2n + 1)π]2
=

1

2
tanh

a

2
. (⋆⋆)

Take care not to get this last result wrong by a factor of two: it is not true that the limit of

the finite sum (⋆) is the infinite sum (⋆⋆).

Q3 Plemelj and Neumann: The Legendre function of the second kind Qn(z) may be

defined for positive integer n by the integral

Qn(z) =
1

2

∫ 1

−1

(1− t2)n

2n(z − t)n+1
dt, z /∈ [−1, 1].
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Show that for x ∈ [−1, 1] we have

Qn(x+ iǫ)−Qn(x− iǫ) = −iπPn(x),

where Pn(x) is the Legendre Polynomial. Deduce Neumann ’s formula

Qn(z) =
1

2

∫ 1

−1

Pn(t)

z − t
dt, z /∈ [−1, 1].

Q4 Hilbert transforms: Suppose that ϕ1(x) and ϕ2(x) are real functions with finite L2(R)

norms.

a) Use the Fourier transform result

(̃Hf)(ω) = i sgn(ω)f̃(ω).

to show that

〈ϕ1|ϕ2〉 = 〈Hϕ1|Hϕ2〉.

Thus, H is a unitary transformation from L2(R) → L2(R).

b) Use the fact that H2 = −I to deduce that

〈Hϕ1|ϕ2〉 = −〈ϕ1|Hϕ2〉

and so H† = −H.

c) Conclude from part b) that
∫ ∞

−∞

ϕ1(x)

(
P

∫ ∞

−∞

ϕ2(y)

x− y
dy

)
dx =

∫ ∞

−∞

ϕ2(y)

(
P

∫ ∞

−∞

ϕ1(x)

x− y
dx

)
dy,

i.e., for L2(R), functions, it is legitimate to interchange the order of “P” integration

with ordinary integration.

d) By replacing ϕ1(x) by a constant, and ϕ2(x) by the Hilbert transform of a function

f with
∫
f dx 6= 0, show that it is not always safe to interchange the order of “P”

integration with ordinary integration

Q5 Advanced Hilbert transforms:

Suppose that are given real functions u1(x) and u2(x) and substitute their Hilbert trans-

forms v1 = Hu1, v2 = Hu2 into (9.78) to construct analytic functions f1(z) and f2(z). Then

the product f1(z)f2(z) = F (z) has boundary value

FR(x) + iFI(x) = (u1u2 − v1v2) + i(u1v2 + u2v1).

a) By assuming that F (z) satisfies the conditions for (9.77) to be applicable to this bound-

ary value, deduce that

H ((Hu1)u2) +H((Hu2)u1)− (Hu1)(Hu2) = −u1u2. (⋆)
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This result1 of part (a) sometimes appears in the physics literature2 in the guise of the

distributional identity

P

x− y

P

y − z
+

P

y − z

P

z − x
+

P

z − x

P

x− y
= −π2δ(x− y)δ(x− z),

where P/(x − y) denotes the principal-part distribution P
(
1/(x− y)

)
. This attractively

symmetric form conceals the fact that x is being kept fixed, while y and z are being integrated

over in a specific order. As the next part shows, were we to freely re-arrange the integration

order we could use the identity

1

x− y

1

y − z
+

1

y − z

1

z − x
+

1

z − x

1

x− y
= 0 x, y, z distinct

to wrongly conclude that the right-hand side is zero.

b) Show that the identity (⋆) can be written as

∫ ∞

−∞

(∫ ∞

−∞

ϕ1(y)ϕ2(z)

(z − y)(y − x)
dz

)
dy =

∫ ∞

−∞

(∫ ∞

−∞

ϕ1(y)ϕ2(z)

(z − y)(y − x)
dy

)
dz − π2ϕ1(x)ϕ2(x),

principal-part integrals being understood where necessary. This is a special case of a

more general change-of-integration-order formula

∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)
dz

)
dy =

∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)
dy

)
dz − π2f(x, x, x),

which is due to G. H. Hardy (1908). It is usually called the Poincaré-Bertrand theorem.

1F. G. Tricomi, Quart. J. Math. (Oxford), (2) 2, (1951) 199.
2For example, in R. Jackiw, A. Strominger, Phys. Lett. 99B (1981) 133.
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