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It is shown that it is possible to demonstrate nonlocality for two particles without using in-
equalities for all entangled states except maximally entangled states such as the singlet state. The
eigenvectors corresponding to the measurements that must be performed to do this are exhibited
and found to have a particularly simple relationship to the entangled state.
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Bell’s 1964 demonstration [1] that realistic interpreta-
tions of quantum theory must be nonlocal required the
use of inequalities now universally known as Bell inequali-
ties. Greenberger, Horne, and Zeilinger (GHZ) [2] caused
much interest when they gave a proof of nonlocality but
without using inequalities. Their proof, however, requires
a minimum of three particles. A proof of nonlocality
without inequalities for two particles had been given ear-
lier by Heywood and Redhead [3] which was much sim-
plified by Brown and Svetlichny [4]. This employed a
Kochen-Specker [5] type argument to demonstrate that
elements of reality corresponding to space separated mea-
surements must be contextual. The GHZ proof used
three spin half particles and the Heywood and Redhead
proof used two spin one particles. Thus both proofs re-
quired a minimum total of six dimensions in Hilbert space
rather than the four required by Bell in his proof. More
recently the present author gave a proof of nonlocality for
two particles [6] that only requires a total of four dimen-
sions in Hilbert space like Bell’s proof but does not re-
quire inequalities. This was accomplished by considering
a particular experimental setup consisting of two over-
lapping Mach-Zehnder interferometers, one for positrons
and one for electrons, arranged so that if the electron and
positron each take a particular path then they will meet
and annihilate one another with probability equal to 1.
Quantum optical versions of the overlapping interferom-
eters have been proposed in [7] and another version with
fermions has been proposed by Yurke and Stoler [8]. The
argument has been generalized to two spin s particles by
Clifton and Niemann [9] and to N spin half particles by
Pagonis and Clifton [10].

So far it has only been shown that this proof can be
run for particular entangled states. The purpose of this
Letter is to show that it can be run for any entangled
state except, curiously, maximally entangled states such
as the singlet state employed by Bell. We will exhibit
the eigenvectors corresponding to the measurements that
must be made and find the entangled states which will
give the maximum effect. This then is the counterpart
of those proofs showing that all entangled states will vi-
olate a Bell inequality [11]. (Although in these proofs
it is found that the maximally entangled state give the
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maximum violation of Bell’s inequalities.)

By choosing appropriate basis states |+); for particle
t with ¢ = 1, 2 (these states do not necessarily have to be
associated with spin—they could be associated with any
other appropriate physical quantity), any two-particle en-
tangled state can be written in the form (by Schmidt
decomposition)

[¥) = al+)1l+)2 — Bl—)1l-)2, (1)
where a and 8 are two real constants with

a®+ 6% =1. (2)

The minus sign in front of § is chosen for later conve-
nience. Note that we are here considering two particle
states for which each particle lives in two dimensions
of Hilbert space. For particles living in a higher num-
ber of dimensions we could perform a measurement that
projects the state of the two particles onto an appro-
priate four-dimensional subspace and preserves the en-
tanglement and proceed from there. Now we introduce
another set of basis states, |u;) and |v;) (the notation
here is chosen to facilitate comparison with [6]), related
to the original basis vectors by

|—)i = salu;) + b*|vy), (3b)
with inverse relations
[us) = b%|+)s — ia”|—)s, (4a)
[vi) = —ta|+): + b[—)i, (4b)
and
la)? + [b2 = 1. (5)

Note that the orthogonality of the new basis states fol-
lows from that of the old basis states. Substituting Eq.
(3) into Eq. (1) gives
| W) = (ab® + Ba?)|uy)|ug) + i(aa*b — Bab™)|u;)|v2)
+i(aa*b — Bab*)|v1)|uz)
—[a(a*)? + B(b*)?]|v1) |v2). (6)
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For reasons that will become clear later we require that
the first term has coefficient equal to zero, i.e., ab? +
Ba? = 0. Thus we can write

a_2 = _E = k2,
o B
or, taking the positive square roots,
a=kva, b=ikyB. (7)

The solution corresponding to the negative root can be
obtained at any stage by putting /8 — —+/B. The con-
stant k can be made to be real by choosing the phases of
a and b appropriately and we shall assume that this has
been done. Thus using Eq. (5) and Eq. (7) we find
1
2 _
ol + 1A ®)

Substituting Eq. (7) into Eq. (6) and using Eq. (8) we

obtain
W) = —[v/aBlui)lva) + v/aBlv1)|usz)
+(laf = 18]) lv1)|v2)],

which can be written as (dropping the overall factor of
-1)

|®=(—ﬁ@—wn+wm—MM0

T 1A]
%v%zﬁMHJM—wmQ

l ] Iﬂ‘ Iul)lu2) (9)

|¥) = N(ABlu1)|va) + ABlv1)|uz) + B?|v1)|v2)),
|¥) = N(le1)(Alug) + Blvz)) — A*(A*|c1) — Bldy))|uz)),

|¥) = N((Alu1) + Blv1))lez)
|¥) = N(le1)|e2) —

Now consider the physical observables U; and D; with
corresponding operators,

U; = |us)(u;| and D; = |d;)(d;],
respectively. These physical quantities each can take val-
ues 0 and 1 corresponding to the eigenvalues of U; and
D;. Note that U; and D; do not, in general, commute so
it is not possible, in general, to measure both U; and D;
on the same particle at the same time. From Eq. (13a)
we see that if we measure U; and U, then

U 1 U2 = 0, (143.)
since there is no |uj)|ugz) term. From Eq. (13b) we see
that if we measure D; on particle 1 and U, on particle 2
then

if D; =1 then U; =1, (14b)
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A*(A*|cr) — Bld1))(A%|c2)

We now introduce a third set of basis vectors defined by

i) = Alu;) + Blvg), (10a)
|di) = —B*|u;) + A" |vy), (10b)
with inverse relations
lui) = A%|c;) — Blds), (11a)
|vi) = B*|c;) + Alds), (11b)

where

__JaB 5 lal-18
VI-laBl VI-laB

Normalization, i.e., that |A|2+|B|? = 1, follows from Eq.
(2). Using Eq. (10a) in Eq. (9) we obtain

[@) = N(ler)|ez) — A%|ua)|us)), (12)
where
1-—|oB|
N= a8l

Using Eq. (10a) and Eq. (11a) in Eq. (12) we can write
the state of the two particles in the following four equiv-
alent forms:

(13a)

(13b)

— A?|u1)(A*|c2) — Blda))), (13¢)
— Blda))). (13d)

since only the |d;)|ug) term contains |d;). Similarly, from
Eq. (13c) we see that if we measure Uy on particle 1 and
D5 on particle 2 then
if Dy =1 then U; = 1. (14c)

Finally, from Eq. (13d) we see that if we measure D; and
D, then for the experiments

D; =1 and D, = 1 with probability |[NA2B2|2 . (14d)
The reason that the coefficient of the first term in Eq.
(6) was chosen to be equal to zero was in order that we
have the prediction (14a).

Using predictions (14a)-(14d) we can prove that real-
istic interpretations of quantum mechanics are nonlocal.
The notion of realism is introduced by assuming that
there exist some hidden variables A which describe the
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state of each individual pair of particles. Assume that
once the state Eq. (1) has been formed the two particles
separate and impinge on two distant apparatuses where
measurements of U; or D; can be made. The assumption
of locality is that the choice of measurement on one side
cannot influence the outcome of any measurement on the
other side. Consider a run of the experiment for which D;
and D, are measured and the results D; =1 and Dy =1
are obtained. That this will happen sometimes follows
from (14d). From the fact that we have D; = 1 it follows
from (14b) that if U; had been measured we would have
obtained the result Up = 1. If we assume locality then we
can assert that, for this particular A, we would have ob-
tained U; = 1 even if U; had been measured on particle
1 instead of D; (because it follows from this assumption
that the choice of measurement on particle 1 cannot in-
fluence the outcome of any measurement on particle 2).
Hence, for this run, U must be determined by the hid-
den variables to be equal to 1, that is U3(A\) = 1. By a
similar argument we can deduce from the measurement
result Dy = 1 and (14c) that U;(A) = 1. Thus, for this
run of the experiment we have Uy (A\)Uz()\) = 1. Hence, if
we had measured U; and U, instead of D; and D, then
it follows from our assumptions that we would have ob-
tained U;U; = 1 but this contradicts (14a). We see that
by assuming locality and realism (i.e., hidden variables)
we arrive at a contradiction and therefore realistic inter-
pretations of quantum mechanics must be nonlocal. The
role played by realism here is that it allows us to assume
that there exists some element of reality corresponding
to each of U; and U; even when these quantities are not
measured. The elements of reality discussed here can be
regarded as Einstein-Podolsky-Rosen elements of reality
as their existence is inferred on the basis of predictions
of probability equal to 1 [12]. It is interesting to compare
this proof with that of GHZ. The GHZ proof can be pre-
sented as an “all or nothing” situation: If nature really
is local such that quantum mechanics is wrong then in a
GHZ type experiment it is necessary that there would be
individual events that violate the predictions of quantum
theory. In Bell’s proof it would only be necessary to have
a statistical violation of quantum mechanics. The proof
presented in this paper falls halfway between these two
extremes. If nature is local then either we must have the
statistical violation of quantum mechanics that a D; =1
and D, = 1 result is never seen or at least one of the
other predictions (14a)—(14c) must be violated in a single
event (or both). Thus, once a D; =1 and Dy = 1 result
is seen, it becomes an all or nothing situation like GHZ.
It is also possible to run an argument against Lorentz-
invariant realistic interpretations of quantum theory us-
ing the predictions (14a)—(14d) and the reader is referred
to [6,9,12,13] for details. (Similar though more compli-
cated arguments against Lorentz invariance can be run
using a GHZ setup, see [14,15].)

The eigenvectors corresponding to the measurements

U; and D; can be expressed in terms of the original basis
vectors [from Egs. (4), (7), and (10)]:

1 1 1
lui) = W(ﬁ [+)i + aZ|=)i), (15)
i) = ———— (B} 4)s —a}|-))),  (16)

Viel® + 182
where we have ignored overall factors of magnitude 1.
It is interesting that the relationship between the coef-
ficients in Eq. (15) and Eq. (16) and the coefficients in
Eq. (1) is particularly simple. If the basis vectors |+);
represent spin :l:% along the z direction then
6 . 6

[+)ie = cos S| +)i +sin 5[~): (17)
represents spin +% along a direction inclined at an angle
6 to the z axis in the z-z plane. Hence, if o and 3 are
positive then we could measure U; and D; by measuring
spin along directions at angles 6y and 6p, respectively,

where
tan 4% =(Z g
2 \B

t 0D___ « %
anT— (E),

putting U;, D; = 1 for a spin up result and U;, D; = 0 for
a spin down result.

The nonlocality proof pertains to the fraction v =
|NA%B?2|? for which D; D, = 1. Therefore the maximum
nonlocal effect is when this fraction is maximum. Using
the above expressions for A, B, and N we can write

_ ( (o] — 18|82

7= ( 1— |af| ) :

It is easily shown that this has a maximum value of

1(5v/5 — 11) (approximately 9%) when 2|af| = 3 — V5,
that is when

(18)
and

(19)

(20)

la|, |8] = 0.9070,0.4211.

For these values we find (taking |3| to be the larger num-
ber)

Oy = 68.54°, 6p = —35.11° .

By considering the negative square root counterpart to
Eq. (7), that is, by putting /3 — —+/B, we find that we
can also use 8y = —68.54° and 6p = 35.11° as we would
expect from symmetry.

If either o or B equals zero then from Eq. (20) we see
that v = 0 and it will not be possible to run the nonlo-
cality argument. This is to be expected for then the state
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Eq. (1) is a product state, that is it is no longer entan-
gled. It is also true that the state in this form would not
lead to a violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequalities [16]. If || = |3|, then the state Eq.
(1) is said to be maximally entangled (the singlet state
is one example) and we find that we get the maximum
violation of the CHSH inequalities. However, for these
values of |a| and |3| we find that v = 0 and the above
nonlocality proof will not go through. The reason for
this is that the proof relies on a certain lack of symmetry
that is not available in the case of a maximally entangled
state.

The experiments that have been proposed with over-
lapping interferometer would prove quite difficult to real-
ize (although the quantum optical versions in [7] should
just be possible). However, it is clear, in the light of
these new theoretical results, that an experiment to test
this effect would be relatively easy to perform. All that
is required is a nonmaximally entangled state [17]. This
could be achieved by the methods in [18] and [19] each in-
volving an arrangement of two nonlinear crystals or more
easily by modifying an experiment performed by Alley
and Shih [20] and also by Ou and Mandel [21]. In this
experiment two photons of the same frequency are cre-
ated by parametric down-conversion and the polarization
of one is rotated through 90° and then the two beams are
combined at a 50:50 beam splitter. If an unsymmetrical
beam splitter was used instead then a nonmaximally en-
tangled state would be produced. Note that in the case of
polarizations the above angles would have to be halved.

* Present address: Institut fiir Experimentalphysik, Uni-
versitat Innsbruck, Technikerstrasse 25, A-6020 Inns-
bruck, Austria.

[1] J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).
[2] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in
Bell’s Theorem, Quantum Theory, and Conceptions of
the Universe, edited by M. Kafatos (Kluwer, Dordrecht,

1668

1989), p. 74; D. M. Greenberger, M. A. Horne, A. Shi-
mony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).

[3] P. Heywood and M. L. G. Redhead, Found. Phys. 13,
481 (1983).

[4] H. R. Brown and G. Svetlichny, Found. Phys. 20, 1379
(1990).

[5] K. Kochen and E. Specker, J. Math. Mech. 17, 59 (1967).

[6] L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).

[7] L. Hardy, Phys. Lett. A 167, 17 (1992); P. Eberhard and
P. Rosselet, “Bell’s theorem based on a generalized EPR
criterion of reality,” Universite de Lausanne report, 1993
(to be published).

[8] B. Yurke and D. Stoler, Phys. Rev. A 47, 1704 (1993).

[9] R. Clifton and P. Niemann, Phys. Lett. A 166, 177
(1992).

[10] C. Pagonis and R. Clifton, Phys. Lett. A 168, 100 (1992).

[11] V. Capasso, D. Fortunato, and F. Selleri, Int. J. Mod.
Phys. 7, 319 (1973); N. Gisin, Phys. Lett. A 154, 201
(1991); S. Popescu and D. Rohrlich, Phys. Lett. A 166,
293 (1992).

[12] L. Hardy, Ph.D. thesis, 1992.

[13] L. Hardy and E. J. Squires, Phys. Lett. A 168, 169
(1992).

[14] I. Pitowsky, Phys. Lett. A 156, 137 (1991).

[15]) R. Clifton, C. Pagonis, and I. Pitowsky, Relativity, Quan-
tum Mechanics and EPR (Philosophy of Science Associ-
ation, 1992), Vol. L.

[16] J. F. Clauser, M. A. Horne, A. Shimony, and R. H. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[17] P. H. Eberhard [Phys. Rev. 47, R747 (1993)] has con-
sidered the use of nonmaximally entangled states for a
different purpose—to reduce the efficiency required of de-
tectors in loophole-free tests of Bell’s inequalities.

(18] L. Hardy, Phys. Lett. A 161, 326 (1992).

[19] P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R.
Y. Chiao, “A Proposal for a Loophole-Free Bell Inequal-
ity Experiment,” University of California, 1993 (to be
published).

[20] C. O. Alley and Y. H. Shih, in Proceedings of the 2nd In-
ternational Symposium on Foundations of Quantum Me-
chanics in the Light of New Technology, Tokyo, 1986,
edited by M. Namiki et al. (Physical Society of Japan,
Tokyo, 1987).

[21] Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).



