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Measurement of Subpicosecond Time Intervals between Two Photons by Interference

C. K. Hong, Z. Y. Ou, and L. Mandel

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
A fourth-order interference technique has been used to measure the time intervals between two pho-

tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.
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Observation of Nonclassical Effects in the Interference of Two Photons

R. Ghosh and L. Mandel

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 21 May 1987)

By measuring the joint probability for the detection of two photons at two points as a function of the
separation between the points, we have demonstrated the existence of nonclassical effects in the interfer-
ence of signal and idler photons in parametric down-conversion. In principle, the detection of one photon

at one point rules out certain positions where the other photon can appear.
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FIG. 1. The geometry of the interference experiment.
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FIG. 3. Experimental results superimposed on the predic-
tions of quantum theory given by Eq. (9) (full curve), and of
the classical theory with maximum modulation (dashed curve).
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idler 1

Evidence for phase memory in two-photon down conversion through
entanglement with the vacuum

LilO4

signal 1

Z.Y.Ou, L. J. Wang, X. Y. Zou, and L. Mandel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 BSp
(Received 14 August 1989)

BS,

signal 2

An experiment has been carried out in which two pairs of light beams produced by down con-
version in two nonlinear crystals driven by a common pump were mixed by two beam splitters,
and the coincidence rate for simultaneous detections of mixed signal and idler photons was mea-
sured. It is found that the down-converted light carries information about the phase of the pump
field through the entanglement of the down-converted photons with the vacuum.
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Induced Coherence and Indistinguishability in Optical Interference

X.Y. Zou, L. J. Wang, and L. Mandel
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(Received 18 March 1991)
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Induced Coherence and Indistinguishability in Optical Interference

X.Y. Zou, L. J. Wang, and L. Mandel

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 18 March 1991)

Second-order interference is observed in the superposition of signal photons from two coherently
pumped parametric down-converters, when the paths of the idler photons are aligned. The interference
exhibits certain nonclassical features; it disappears when the idlers are misaligned or separated by a
beam stop. The interpretation of this effect is discussed in terms of the intrinsic indistinguishability of
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Propagation of transient quantum coherence

L.J. Wang and J.-K. Rhee
NEC Research Institute, Inc., 4 Independence Way, Princeton, New Jersey 08540
(Received 23 Janvary 1998; revised manusecript recerved 18 August 1998)

We perform a time-resolved quantum interference experiment based on the effect of induced coherence
without induced emission using two pulsed parametric down-conversion sources. We periodically vary the
transmission of the first source’s idler beam and measure the time-dependent visibility of fringes in the
interference between the two signal beams. The visibility is found to be correlated with the transmuassivity with
a time delay corresponding to a combined path of the first idler and the second signal beam. The experiment

is discussed in the context of the delayed choice experiments. [S1050-2947(99)09402-0] N
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Measurement of the Photonic de Broglie Wavelength of Entangled Photon Pairs Generated
by Spontaneous Parametric Down-Conversion

Keiichi Edamatsu, Ryosuke Shimizu, and Tadashi Itoh

Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
(Received 21 February 2002; published 4 November 2002)

Using a basic Mach-Zehnder interferometer, we demonstrate experimentally the measurement of the
photonic de Broglie wavelength of entangled photon pairs (biphotons) generated by spontaneous
parametric down-conversion. The observed interference manifests the concept of the photonic
de Broglie wavelength. We also discuss the phase uncertainty obtained from the experiment
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Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band

Xiaoying Li,* Paul L. Voss, Jay E. Sharping, and Prem Kumar

Center for Photonic Communication and Computing, ECE Department, Northwestern University, Evanston, Illinois 60208-3118, USA dler
(Received 12 August 2004; published 9 February 2005) J

We present a fiber-based source of polarization-entangled photons that is well suited for quantum
communication applications in the 1550 nm band of standard fiber-optic telecommunications. Polarization '..
entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed
orthogonally polarized pump pulses and subsequently removing the time distinguishability by passing the
parametrically scattered signal and idler photon pairs through a piece of birefringent fiber. Coincidence
detection of the signal and idler photons yields biphoton interference with visibility greater than 90%,
while no interference is observed in direct detection of either signal or idler photons. All four Bell states
can be prepared with our setup and we demonstrate violations of the Clauser-Horne-Shimony-Holt form
of Bell’s inequality by up to 10 standard deviations of measurement uncertainty.
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PRL 102, 123603 (2009) PHYSICAL REVIEW LETTERS 27 MARCH 2009

Tailored Photon-Pair Generation in Optical Fibers

FIG. 2 (color online). Fiber spectrum (inset) and polarization

. * . . .
Offir Cohen,” Jeff S. Lundeen, Brian J. Smith, Graciana Puentes, Peter J. Mosley, and Ian A. Walmsley HOM experimental setup. Although some Raman background

Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom

(Received 29 August 2008; published 27 March 2009) remains at the idler wa_vel_ength, the 1:-1-::_1{ of background at the
signal ensures that coincidence detection events most likely
We experimentally control the spectral structure of photon pairs created via spontaneous four-wave originate from SFWM.

mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the
photons’ wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon pairs
with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets
without filtering. We achieve an experimental purity of (85.9 = 1.6)%, while theoretical analysis and
preliminary tests suggest that 94.5% purity is possible with a much longer fiber.
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Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing
in a Cold Atomic Ensemble

Bharath Srivathsan,! Gurpreet Kaur Gulati,' Brenda Chng,' Gleb Maslennikov,’
Dzmitry Matsukevich,"* and Christian Kurtsiefer'>*

'Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

zDepartnlent of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
(Received 15 February 2013; published 17 September 2013)

We observe narrow band pairs of time-correlated photons of wavelengths 776 and 795 nm from
nondegenerate four-wave mixing in a laser-cooled atomic ensemble of ®'Rb using a cascade decay
scheme. Coupling the photon pairs into single mode fibers, we observe an instantaneous rate of 7700 pairs
per second with silicon avalanche photodetectors, and an optical bandwidth below 30 MHz. Detection
events exhibit a strong correlation in time [¢?)(r = 0) = 5800] and a high coupling efficiency indicated
by a pair-to-single ratio of 23%. The violation of the Cauchy-Schwarz inequality by a factor of 8.4 x 105
indicates a strong nonclassical correlation between the generated fields, while a Hanbury Brown—Twiss
experiment in the individual photons reveals their thermal nature. The comparison between the measured
frequency bandwidth and 1/e decay time of g indicates a transform-limited spectrum of the photon
pairs. The narrow bandwidth and brightness of our source makes it ideal for interacting with atomic
ensembles in quantum communication protocols.
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Mechanical Detection and Measurement of the Angular Momentum of Light

Ricuarp A. Betn,* Worcester Polytechnic Institute, Worcester, Mass. and Palmer Physical Laboratory, Princeton University
(Received May 8, 1936)

The electromagnetic theory of the torque exerted by a
beam of polarized light on a doubly refracting plate which
alters its state of polarization is summarized. The same
quantitative result is obtained by assigning an angular
momentum of & (—#) to each quantum of left (right)
circularly polarized light in a vacuum, and assuming the
conservation of angular momentum holds at the face of the
plate. The apparatus used to detect and measure this effect

was designed to enhance the moment of force to be
measured by an appropriate arrangement of quartz wave
plates, and to reduce interferences. The results of about 120
determinations by two observers working independently
show the magnitude and sign of the effect to be correct,
and show that it varies as predicted by the theory with
each of three experimental wvariables which could he
independently adjusted.
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Besides almost quadrupling the torque com-
pared to what would be obtained if the light
were simply absorbed, and furthermore reducing
heating, radiometer, and gas effects in the
vacuum chamber, this plate arrangement greatly
reduced difficulties due to radiation pressure.
The disk M cannot be mounted exactly at right
angles to the fiber axis, nor can the light be
projected exactly in a wvertical direction. Thus
the resultant light pressure integrated over the
disk will not be quite vertical and will produce a
“light pressure torque’’ unless its line of action
lies in a vertical plane containing the fiber axis.
Without special precautions this torque might
very easily mask the effect to be detected and
measured."”
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Photon Orbital Angular Momentum

Figure 1. Laser beams usually have planar wavefronts with wavevectors parallel to the beam axis. Beams with helical wavefronts have
wavevectors which spiral around the beam axis and give rise to an orbital angular momentum.

Laguerre Gaussian Mode

VOLUME 88, NUMBER 25 PHYSICAL REVIEW LETTERS 24 June 2002

Measuring the Orbital Angular Momentum of a Single Photon

bectB, pud b2, il Jonathan Leach,! Miles J. Padgett,! Stephen M. Barnett,”> Sonja Franke-Arnold,” and Johannes Courtial"-*

' Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland
*Department of Physics and Applied Physics, University of Strathclyde, Glasgow, Scotland
(Received 21 January 2002; published 5 June 2002)

We propose an interferometric method for measuring the orbital angular momentum of single photons.
I=+1, p=0  I=-1, p=0 We demonstrate its viability by sorting four different orbital angular momentum states, and are thus
able to encode two bits of information on a single photon. This new approach has implications for
entanglement experiments, quantum cryptography and high density information transfer.

=0, p=0 http://www.physics.gla.ac.uk/Optics/play/photonOAM/



“Orbital” Angular Momentum of Photons
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Efficient Sorting of Orbital Angular Momentum States of Light

Gregorius C. G. Berkhout,'** Martin P. J. La‘.ft’:r}-'.'ﬂjj Johannes Courtial,’ Marco W. Beijershergen."z and Miles J. Padgett3

We present a method to efficiently sort orbital angular momentum (OAM) states of light using two
static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation,
converting the helically phased light beam corresponding to OAM states into a beam with a transverse
phase gradient. A subsequent lens then focuses each input OAM state to a different lateral position. We
demonstrate the concept experimentally by using two spatial light modulators to create the desired optical
elements, applying it to the separation of eleven OAM states.
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100 Thit/s free-space data link enabled by
three-dimensional multiplexing of
orbital angular momentum, polarization, and wavelength

Hao Huang,"* Guodong Xie," Yan Yan,' Nisar Ahmed," Yongxiong Ren,' Yang Yue,' Dvora Rogawski,’

Moshe J. Willner,'

Baris I. Erkmen,* Kevin M. Birnbaum,* Samuel J. Dolinar,’
Miles |J. Padgett,” Moshe Tur,*

and Alan E. Willner!

Martin P. J. Lavery,’

We investigate the orthogonality of orbital angular momentum (OAM) with other multiplexing domains and
present a free-space data link that uniquely combines OAM-, polarization-, and wavelength-division multiplexing,
Specifically, we demonstrate the multiplexing/demultiplexing of 1008 data channels carried on 12 OAM beams,
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Synopsis: Entangled Quadruplet

February 16, 2016

Four photons are shown to be entangled through their orbital angular momentum.

W, Loffler/Leiden University

Observation of Four-Photon Orbital Angular Momentum Entanglement
B. C. Hiesmayr, M. J. A. de Dood, and W. Loffler

Phys. Rev. Lett. 116, 073601 (2016)

Published February 16, 2016
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