
Measuring the quantum mechanical wave function

M. G. RAYMER

In the past few years experimenters have learned how to determine the complete quantum

state of an ensemble of particles or ® elds which have been prepared according to some

unknown procedure. Through these experiments they have answered a question posed by W.

Pauli in the 1930s. The methods used involve measuring statistical distributions of a well

chosen set of physical observables and using a tomographic inversion algorithm to

reconstruct the Wigner function and its corresponding wave function or density matrix.

Recontructions have been successfully carried out in atomic, molecular, and optical physics.

The development of these procedures helps to ® rm up the interpretation of the SchroÈ dinger

wave function.

1. Introduction Ð the Pauli question

Since the early days of quantum mechanics (QM) there has

been puzzlement over the physical meaning of SchroÈ din-

ger’s wave function w (r). Is it analogous to other ® elds in

nature, such as the gravitational or electric ® elds? Probably

not Ð these are physical ® elds, which represent concrete

forces and thus can be directly measured by using a suitable

instrument designed to respond to these forces. Never-

theless, many scientists (and non-scientists) have elevated

the w -® eld in their thinking to represent some re¯ ection of

reality that can be associated with the particle that it is

meant to represent. Some would even replace the particle

itself by its mathematical w representation. But wait. Max

Born told us in the 1920s that the square of the w -® eld,

|w (r)|2 actually represents only the probability for an

experimenter to observe, or ® nd, the particle near a

location r if she uses a suitable instrument to detect its

presence. Any QM textbook will tell you that, and it is

perfectly true as far as anyone presently knows.

But what of w (r) itself? Why is it a complex number,

composed of `real’ and ìmaginary’ parts, w R(r)+ iw I(r)?

The surprising truth, I believe, is that at this point we do

not know why w has two parts [1]. The good news is that we

do know almost everything about how to calculate w for a

given physical set up. We know how to use the calculated w
to predict the outcomes of the most excruciatingly detailed

measurements Ð for example the gyromagnetic ratio of the

electron is known experimentally and theoretically to

twelve signi® cant digits [2].

We know all of this about w (r), but do we know how to

`measure’ it? Since w (r) is not a physical ® eld, we cannot

construct a w -meter, much like a volt ± ohm meter, which

would register a de® nite value of w on interacting with a

particular quantum system (perhaps a particle) in question.

See ® gure 1. If you adopt Born’s assertion, you realize that

in order to measure (that is, determine by experiment) the

squared function |w (x)|2 it is su� cient to do the following.

Prepare in an identical fashion a very large number (M) of

identical systems and, one-after-the-other, measure their
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Figure 1. A hypothetical meter which, by choosing the proper

setting, would measure volts, ohms, or the real or imaginary

parts of the w -® eld.
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positions xn, for n = 1,2, . . .,M. (I am using one dimension

only, for simplicity). Then build a histogram, as in ® gure 2,

of the number Nn of times that xn falls within a range x to

x+ dx, and assert that the probability density, or |w (x)|2, is

proportional to Nn/M that is,

|w (xn)|2 dx $Nn /M. (1)

Other than the use of the notation |w (x)|2 for probability

density, this procedure is the same as that used in purely

classical statistics. For example, if you sum over Nn/M, or

integrate over |w (x)|2, you must get unity. In light of this, it

is probably more clear to say that you have `inferred’ or

`determined’ |w (x)|2 rather than `measured’ it, since a single

observation of a particle tells virtually nothing about the

whole form of |w (x)|2.

We arrive at a conclusion and a question. The w -function

is a statistical property of (or represents probablity

information about) a very large collection of similarly

prepared particles rather than a single particle. The very

concept of a wave function of a single particle can be called

into question, as I will discuss below. The question still

is Ð can I infer the whole complex fuction w (x) from some

series of measurements on a large collection of identically

prepared particles? This is a generalized version of the

`Pauli Question’ [3].

In the following I will explain how this generalized Pauli

Question has recently been answered in the a� rmative. I

will discuss recent experiments which allowed the inference

of w corresponding to the quantum states of a vibrating

molecule, a trapped atomic ion oscillating in a con® ning

potential, a light ® eld, and an atomic beam.

2. The structure of quantum mechanics Ð the key to

`measuring’ w

The key to the Pauli Question turns out also to contain one

of the biggest mysteries of QM Ð the wave function w (x),

describing the particle’s position information, is uniquely

related to the wave function,
~
w (P), describing its momen-

tum (P) information. There is no counterpart to this

statement in classical (Newtonian) physics. It means that

the relation between momentum and position probability

densities is not arbitrary, as it would be if the world were

classical. It is telling us that momentum and position are

not completely independent quantitites nor even wholly

separate concepts. In some sense they could be thought of

as two diŒerent, complementary properties, or aspects, of a

single underlying entity, or element of reality. This thought

is the key to solving our problem because it leads us to the

idea that we must reconstruct an underlying structure of

information about the particles which itself cannot be

directly observed. This information structure, as I am

calling it, is the quantum wave function.

With this background I will now give a tentative, but

completely standard, de® nition of ẁ -function’, or more

generally `quantum state’ . Paraphrasing Ballentine [4,5], I

assert.

(1) A quantum state of a physical system (e.g. particle) is

that which speci® es the probability distributions for

measurements of any and all physical, observable

quantities pertaining to that system.

(2) The state may be associated with an abstract (and

in® nite) collection of systems which are all created or

prepared in an identical way.

(3) Mathematically the state may be fully represented by

the SchroÈ dinger w -function (in the case of identical

system preparation).

(4) In the case of non-identical preparation the descrip-

tion may be generalized by using the so-called

density matrix, or state matrix.

Item (1) generalizes the fact, pointed out earlier, that the

momentum and position distributions can be found from

the same wave function w (x). That is, the momentum wave

function is

~
w (P) 5

1

(2 p ±h)
1 /2

w (x) exp 2 (ixP / ±h) dx, (2)

namely, a Fourier transform of w . (Unless stated, all

Figure 2. A histogram of event numbers becomes an experimental estimate of the square of the wave function w as the size of each bin

becomes small and the number of measurements becomes large.
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integrals are from Ð ` to + ` . The generalization of

equation (2) to an arbitrary variable R is

~
w R(R) 5 w (x)U(x, R) dx, (3)

where U(x,R) is some transformation function. Then the

probability density for obtaining values R upon measure-

ments is |~
w R(R)|2 .

It is not understood deeply why the wave functions

transform in this way. This question is likely related to the

question why the wave function is complex. Again the

complementarity idea comes in. Any two variables whose

wave function representations transform as in equation (2)

are said, ® rst by Niels Bohr, to be complementary [6].

If the state if identi® ed with the set of probability

densities for all possible observable variables, as in Item (1),

then it might be thought that in order to determine a state,

you would need to measure the distributions of all of the

variables and then try to invert the data to ® nd the state. It

turns out, though, to our good fortune, that one needs only

to measure the distributions of a subset of all possible

variables. I call such a subset of variables Tomographically

Complete.

I want to clarify that the Pauli Question does not deal

with determining the familiar energy eigenstates of a

quantum system, a task familiar from textbooks and which

makes up the core of spectroscopy. Rather Pauli asked how

to determine the particular linear combination of eigen-

states that a system has been prepared in.

3. Reconstructive tomography Ð classical

Tomography generally means the reconstruction of an

unknown two-dimensional (2-D) function D(x,y) from

knowledge of a large set of one-dimensional functions,

called projections, which are related to the 2-D function by

adding up, or integrating, its values along a set of paths,

often straight lines [8]. You should know this concept from

medical imaging Ð a medical technician passes beams of X-

rays through a 2-D slice of your body, which absorbs the

X-rays, adding up the density of the bits along diŒerent

straight paths, to produce a 1-D function F(0,x). Your

body is then rotated by various angles h n and the process is

repeated to yield a set of functions F( h n, n ) where n is the

distance from the origin to the line of integration. This is

illustrated in ® gure 3. Finally the set of functions is used to

reconstruct the original 2-D density function D(x,y),

thereby producing an image of the interior 2-D slice of

your body. For discovering and applying this inversion

method to medical imaging in the 1960s, Cormack and

Houns® eld shared the Nobel Prize in Medicine. The

underlying mathematics had been previously discovered

by Johann Radon in 1917. The so-called Radon transform

(RT) and its inverse are operations that can be performed

by computer software, and can be expressed as

F( h n , n ) 5 RT{D(x, y)}, (4)

D(x, y) 5 RT 2 1{F( h n, n )}. (5)

How can we apply this type of reasoning to momentum

and position measurements? Think of a collection of

particles having classical behaviour Ð say mu� ns coming

rapidly down a ¯ at-surfaced chute in an automated mu� n

factory ² , as in ® gure 4.

Figure 3. In computer-aided tomography (CAT) a beam of X-

rays passes through a head, integrating the head’s density

function D(x,y) along straight lines. If this is carried out for

many diŒerent angles h n the density function can be recon-

structed by computer processing of the projection data.

² This may remind some readers of the Utility Muffin Research Kitchen

described by F. Zappa. [`Muffin Man’ , by F. Zappa, in Bongo Fury

(Warner Bros., Los Angeles, (1975)]

`In quantum physics . . . evidence about atomic objects

obtained by diŒerent experimental arrangements

exhibits a novel kind of complementarity relationship.

Indeed it must be recognized that such evidence, which

appears contradictory when combination into a single

picture is attempted, exhausts all conceivable knowl-

edge about the object. . . . Moreover, a completeness

of description like that aimed at in classical physics is

provided by the possibility of taking every conceivable

experimental arrangement into account.’ [7]

Niels Bohr
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Assuming the laws of statistics are in eŒect, there is some

joint-probability density Pr (x,Px) for mu� n position x and

momentum Px in the x-direction. How can you ® nd out this

2-D density function by making measurements of only 1-D

density functions? The tomographic method gives the

answer Ð simply measure the position distribution at many

diŒerent distances, Ln, from the oven source. Call each

distribution F( n ;Ln), with n being the position variable. If

the speed in the z-direction is much larger than that in the

x-direction, and is equal for all mu� ns, the observed

position n will be given in terms of the unknown x and Px

values by n = x+ (Px/m)t, where m is the mu� n mass and

t = Lnm/P is the time taken to move to the z = Ln line. The

fraction (probability) Pr ( n ;Ln) of mu� ns arriving at n will

be proportional to the sum number of all mu� ns having

the correct combination of initial x and Px so that they each

arrive at n . That is, for each Ln,

Pr ( n ; Ln) 5
C( n )

Pr (x, Px) dx dPx , (6)

where the C( n ) means an integral through the (x, Px) plane

along the line made up of all points satisfying x+ (Px/
m)t = n ( n ® xed), as shown in ® gure 5. Equation (6) is a

case of the Radon projection transform and so we know

that it can be inverted as in equation (5) if we can measure a

su� cient number of the Pr ( n ; Ln) functions at diŒerent L

values. By this method the initial density function Pr (x, Px)

is obtained!

Figure 4. An ensemble of classical particles (illustrated by mu� ns) exit in random directions from an oven at z = 0. Our goal is to

determine the joint-probability density Pr (x,Px) for mu� n position x and momentum Px without measuring both position and

momentum for any single mu� n.

Figure 5. The line of integration de® ning the probability

Pr ( n ; Ln) of a particle arriving at n , according to equation (6).
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4. Reconstructive tomography Ð quantum

This ability to extract 2-D, or joint, probabilities

pertaining to a pair of random variables from measure-

ments only of individual random variables is quite nice

and can be applied to data similarly measured for a

stream of quantum particles. These could be atoms

emitted from a `hot-oven’ source. You may have guessed

already the reason for this strange-appearing scheme. We

all know that Heisenberg’ s indeterminacy principle (often

mistranslated as `uncertainty’ principle) states that it is not

possible, even as a matter of principle, to measure

simultaneously, or jointly, the momentum and position

of an individual particle with arbitrarily high precision.

(This is related to the idea of complementarity, discussed

earlier, and a similar statement holds for any pair of

complementary variables, those obeying equation (2)).

Fortunately the proposed scheme requires us only to

measure one variable Ð position Ð and this can be done

with very high precision indeed [9]. So nothing can stop

me from measuring the distributions Pr ( n ; Ln) for a set of

truly quantum particles. And no one can prevent me from

entering this measured data into my computer which

contains the software to invert the Radon projection

integral, to yield a 2-D function which I have previously

called the joint probability, or Pr (x,Px). But now I must

not use this terminology since QM tells me that there is

actually no such thing as a joint probability for comple-

mentary variables. So I will call it the computer-

reconstructed function W(x,Px) instead of Pr (x,Px).

What is the physical meaning of this reconstructed

function W(x,Px)? A near-miracle occurs at this point

because it turns out that from this 2-D function I can

numerically construct not only the square of the wave

function, but the actual complex wave function of

SchroÈ dinger! To put this into context, it helps to back up

a little and discuss an important contribution made by a

great physicist, Eugene Wigner.

5. The Wigner quasi-probabil ity distribution

Besides making important theoretical advances in a wide

range of physics, Wigner is known for his introduction of

an interesting way to see the correspondence, or rather lack

of correspondence, between classical and quantum theory.

In struggling with certain problems in statistical thermo-

dynamics he was inspired to try to write the quantum

version of the equations in a form as similar as possible to

those in the classical theory. To do this he wanted to ® nd a

way to use SchroÈ dinger’s wave function w (x) to write an

expression which has the look and feel of a joint probability

for momentum and position. Realizing that no true

function of this type could exist, he (or perhaps others

later) began to call his new function a quasi-probability

distribution.

Wigner de® ned the following function [10],

W(x, Px) 5
1

2 p ±h
w (x 1 x ¢ /2) w *(x 2 x ¢ /2)

exp ( 2 ix ¢ Px / ±h) dx ¢ . (7)

Notice the similarity between this transformation and

equation (2). Both are Fourier transforms from position

to momentum. But because the integral in equation (7) is

over x ¢ , the x variable still appears as a variable in

W(x, Px).

Here is the key point. It turns out that the quantum

tomography procedure I described above reconstructs

exactly the function W(x,Px) in equation (7). To see the

tomographic connection ® rst try integrating equation (7)

over Px. Recall the fact that integrating exp ( 2 ix ¢ Px / ±h)
over Px yields a Dirac delta function of x ¢ , that is a function

which is zero everywhere other than at x ¢ = 0 [11]. This

means that the following x ¢ integration just picks out the

value of the integrand w (x+ x ¢ /2) w * (x Ð x ¢ /2) at the value

x ¢ = 0, giving

W(x, Px) dPx 5 |w (x)|2 . (8)

This says that the correct quantum probability for position

x is obtained by integrating the 2-D function W(x,Px) in the

x,Px plane along the line on which x is held constant. That

is a special case of the projection integral illustrated in

® gure 5, in the case that the line is vertical (parallel to the

Px) axis. So equation (8) is an example of the Radon

projection integral.

Another projection example can be found by integrating

W(x,Px) over the x variable. A similar (but trickier)

calculation leads to

W(x, Px) dx 5 |~
w (Px)|2 , (9)

where
~
w (Px) is the momentum wave function given in

equation (2). So equation (9) gives the measurable

distribution for momentum, and is related to W(x,Px) by

a horizontal-line integral in ® gure 5. It turns out that the

distributions of all measurable variables n = x+ (Px/m)t are

equal to projection integrals along precisely the same lines

as are proper in the classical case. That is, if a n -wave

function
~
w n ( n ) is calculated using the correct transforma-

tion equation (3), then the probability distribution for the n
variable is expressible as

C( n )
W(x, Px ) dx dPx 5 |~

w n ( n )|2 . (10)

This naturally means that we can reconstruct the Wigner

function W(x,Px) by applying the inverse-Radon software

to the validly collected set of distributions Pr ( f ; Ln). This is

quantum tomography. This was ® rst proved by the wife-

and-husband team of mathematical physisicts J. Bertrand

and P. Bertrand [12].
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One proof that W(x,Px) cannot be a classical joint

probability is the fact that for certain quantum states it can

take on negative values for some values of x and Px. In

contrast, true probabilities must be positive.

How do we ® nd the wave function once we know the

Wigner function? Because the equation is a Fourier

transform it has a unique inverse; this yields the product

w (x+ x ¢ /2) w *(x Ð x ¢ /2), which can be thought of as a

complex function in the x,x ¢ plane. By evaluating this

function along the line x = x ¢ /2 we obtain w (2x)w *(0). We

know that any wave function may be multiplied by an

arbitrary phase factor exp (i / ) without changing the

physical state Ð this is the meaning of the factor w *(0).

Thus, by dividing w (2x)w *(0) by [w (0)w *(0)]
1/2 we obtain

w (x) to within an arbitrary phase.

Why, or how, does this work? How can measuring

real functions of single variables yield a complex

function? Again it is due to the remarkable structure

of QM itself. The distributions of all of the measurable

variables n can be computed from a single complex, 1-D

function w (x), or alternatively from the single real, 2-D

function W(x,Px). These functions are uniquely related to

one another.

6. Quantum to classical

If the experiment described above is carried out with

mu� ns, instead of single atoms, do we obtain a w -

function for the mu� ns, which after all are classical

bodies? No! A collection of real mu� ns could most likely

never be prepared in a pure quantum state the way atoms

can. This is because mu� ns (like cats or dogs) are far

too large and complicated for mere mortals to be able to

prepare them perfectly, and identically, every time. Many

outside in¯ uences interfere Ð a ¯ ea sneezes, a photon

goes bump, a proton decays, all disturbing the prepara-

tion process. It is now understood better than it was in

the 1920s why small in¯ uences are actually far more

severe for large bodies than for tiny ones. It has been

shown that a wide class of in¯ uences that can be

associated with random events will lead to the destruc-

tion of the coherence between diŒerent parts of a wave

function [13]. The farther apart (in phase space) that

these pieces of the wave function are, the faster the

coherence is destroyed, and by tinier amounts of outside

in¯ uences. If there were truly no outside in¯ uences (the

mu� n or cat is in a shielded box at absolute-zero

temperature) then in principle a macroscopic system

prepared in a particular w state would remain in that

state. But in reality any random outside in¯ uence, even

just the tidal-induced distortion of the moon and its

consequent gravitational interaction with our mu� n of

interest (you cannot shield gravity) will cause the

`decoherence’ of its wave function [14].

If we prepare a collection of large, macroscopic particles

to the best of our ability they will not be described by a

single, pure quantum state Ð therefore a quantum-tomo-

graphy reconstruction experiment will not produce such a

pure state. Rather, a statistical mixture of many possible

states will be found. Mathematically this is represented by a

so-called density matrix, which can describe a quantum

system or a system having almost perfectly classical

statistical properties [15]. It also turns out that in this case

the Wigner function may well be thought of as being truly a

classical joint probability distribution; it is positive for all

values of x and Px. One might even argue that all classical

probabilities are actually Wigner functions in the classical

limit.

If we prepare a collection of microscopic particles (not

mu� ns) which are well isolated from their environment

then we can approach the ideal limit in which the ensemble

is described by a pure quantum state. Unavoidable, slight

deviations from this limit, caused by small imperfections in

our preparation procedure, will not prevent us from

approximating the ideal case, and therefore in this limit

we can say we have reconstructed a pure state for all

practical purposes.

7. Case studies of quantum tomography

Only since 1993 have measurements been performed for the

purpose of reconstructing quantum states for the behaviour

of a continuous degree of freedom, like position. In this

section I will describe all of the examples of such

measurements that have been carried out to date. They

are: free particles, molecular vibration, trapped-ion motion,

and a light ® eld ² .

7.1. Vibrating molecule Ð the harmonic oscillator

Two atoms bound chemically form a simple molecule, as in

® gure 6. Denote the distance between the atoms by q and

the momentum associated with its change by p. Initially the

electrons and nuclei are in their lowest energy eigenstate. A

short laser pulse can be used to excite the electron cloud to

a higher energy eigenstate. As a result the nuclei suddenly

feel new forces and their separation distance q begins to

oscillate. The restoring force can be approximated by Ð kq

(k is the spring constant), corresponding to motion in a

harmonic potential 1
2 kq2 . We can describe the vibrations of

the initially excited state (a wave packet) by using the well

known quantum theory of the harmonic oscillator. The

² A few years earlier quantum states for angular-momentum of an electron

in an atom were obtained experimentally [17]. Because the angular

momentum of these states involved only a few discrete values, a smaller

number of measured distributions is required than in the continuous case,

and the tomographic analogy does not hold in a simple way. Nevertheless,

the role of reconstruction is the same.
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time evolution of the Wigner function is governed by the

time-dependent SchroÈ dinger equation. Only the harmonic

oscillator and the free particle have the remarkable

property that their quantum Wigner functions W(q,p)

evolve in time exactly as do their corresponding clasical

joint probabilities Pr (q,p) for position and momentum [16].

This happy accident means that we can again appeal to a

classical picture to understand the dynamics.

A classical harmonic oscillator with initial position q0

and initial momentum p0 evolves in time harmonically:

q(t) 5 qo cos x t 1 (po / x m) sin x t,

p(t) / x m 5 2 qo sin x t 1 (po /x m) cos x t, (11)

where x = (k/m)
1/2 is the natural oscillation frequency. If

this is plotted as a curve in a q, p/ x m plane, it traces out a

circle. A whole distribution of initial (q0, p0/ x m) points will

therefore simply rotate with time in the q, p/ x m plane

without changing its shape. This is shown in ® gure 7. As

seen in the ® gure the probability distribution Pr (q;t) for q

oscillates back and forth, changing shape periodically.

Because Pr (q;t) is given by the Radon projection integral

along vertical lines (dashed in the ® gure), we again have a

basis for tomography, quantum or classical.

This type of state reconstruction has been performed

with sodium molecules by Dunn et al [18]. After exciting

the molecular vibration with a laser-pulse, these researchers

measured the spectrum of light emitted by the molecules as

they oscillated. By observing the time evolution of this

spectrum they could determine, with some ® nite precision,

the probability distribution Pr (q;t). From this they

reconstructed an image of the Wigner distribution shown

in ® gure 8, representing the state of the molecular vibration

just following the excitation pulse. Actually, because of the

® nite resolution of the Pr (q;t) measurements, the function

shown in the ® gure is really a blurred image of W(q, p). For

this reason the researchers were not able to proceed to

extracting the complex wave function. Nevertheless, the

measurements still provide the most detailed characteriza-

tion of any molecular vibration yet achieved. This type of

information should be helpful in current eŒorts to create

speci® c wave-packet states of molecules for the purpose of

controlling chemical reactions.

7.2. Light Ð a harmonic EM oscillator

The properties of light provided some of the earliest hints

about the quantum nature of the world. Einstein’s

interpretation of the Planck blackbody spectral formula

really kicked things oŒ. What is light, though? We know

from Paul Dirac’ s theoretical work that light is the

quantized excitations of the electromagnetic (EM) ® eld. A

Figure 6. (a) Two atoms with internuclear distance q and

electrons in their lowest energy state form a molecule. (b) An

ultrashort laser pulse excites the electrons to a higher-energy

state, which induces the nuclei to begin vibrating.

Figure 7. The motion of the molecular oscillator is shown in a

phase space made up of the interatom separation q and the

interatom momentum p. The Wigner function, which represents

the quantum state, rotates in this space, and the projected

Wigner function, equal to the probability distribution Pr (q;t) for

q, oscillates.

Figure 8. The result of an experimental reconstruction of a

Wigner function (with some blurring) representing the quantum

state of a molecular oscillator. (From [18].)
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linearly polarized, plane travelling wave can be represented

at a ® xed point in space by its oscillating electric-® eld

amplitude,

E(t) 5 E0 [q cos ( x t 1 h ) 1 p sin ( x t 1 h )]. (12)

Here E0 is a known scaling ® eld value that depends on the

volume of the enclosure in which the light travels and

Planck’s constant ±h . Here the variables called q and p have

nothing to do with position or momentum; they are simply

unitless numbers giving the strength of the electric ® eld.

The notation reminds us that q and p are complementary in

the sense of equation (2). Also an optical phase shift h is

included in equation (12). Let us denote by q0 and p0 the

values in the special case that h = 0. If the value of the

phase shift is not zero, then q, p may be related to q0 and p0

by

q 5 q0 cos h 1 p0 sin h ,

p 5 2 q0 sin h 1 p0 cos h . (13)

This has a form similar to equation (11) and it also

describes a simple rotation in the q, p plane. Again we can

carry out quantum tomography; we need only to measure

the probabilities Pr (q;h ) for observing a (unitless) electric-

® eld strength q, for many values of phase shift h between 0

and p .

Measurements of the ® eld strength in a light beam can be

performed by using interferometry. The unknown ® eld of

interest (the signal ® eld) E(t) is made to interfere with a

known, much stronger, reference ® eld ER(t), with

ER(t) 5 ER0 cos ( x t 1 h ). (14)

The time-integrated intensity of the light after interference

is given by

1

T

t 1 T

t

[ER(t) 1 E(t)]2 dt 5
1

2
E

2
0 1

1

2
E

2
R0 (q

2 1 p
2) 1 ER0E0q. (15)

If ER0 is much larger than Eo and known, then from a

measurement of this intensity we can obtain the value of q.

Notice that the value of h is de® ned by a phase shift which

can be introduced into the reference ® eld and can be

controlled by the experimenter.

Again we follow the tomographic scheme Ð measure q

many times for each value of h to build up histograms and

thereby determine the set of probabilities Pr (q; h ) [19].

Because the h values correspond to diŒerent rotations in the

q,p plane we can apply the standard reconstruction

mathematics and obtain the Wigner function W(q,p). If

the light ® eld is prepared in a pure-wave-function state, this

wave function can be determined from the reconstructed

Wigner function.

The result of such a wave-function measurement carried

out by researchers in my laboratory at the University of

Oregon is shown in ® gure 9 [20]. A light beam from a stable

laser was split on a partially re¯ ecting mirror to provide the

reference ® eld travelling in one direction and the signal ® eld

in another. The signal was strongly attenuated using more

re¯ ective and/or absorbing surfaces in order to make a ® eld

weak enough to be subject to true quantum measurements.

The two ® elds were again combined on a 50% re¯ ecting

mirror and the interference was measured, from which the

value of q for each trial was obtained. After tomographic

reconstruction of W(q,p) the wave function shown in the

® gure was determined. It shows results expected for a

coherent laser ® eld Ð a constant, or linearly varying phase,

and a smooth, Gaussian-like peak in the amplitude of the

wave function, centred at a small non-zero value equal to

the average value of q.

The mean value n of the photon number n in the light

® eld is analogous to the average excitation quantum

number of a harmonic oscillator and in both cases equals

the expectation value of the energy divided by ±h x This is

given by

n 5 w *(q)
1

2
q

2 1
d

2

dq2
w (q) dq, (16)

and has the value 1 × 2 in this example. Note that in the

photon-number formula there are no factors of ±h or m as

would appear for an oscillator with mass m.

Now a very interesting point can be made about the

usefulness of this measurement scheme. We made only

interferometric measurements on the signal ® eld, so no

precise information about the signal photon number could

be obtained from a single measurement. Nevertheless we

Figure 9. An experimentally reconstructed quantum wave

function of a pulsed light ® eld containing on average 1 × 2
photons, produced by strongly attenuating a laser ® eld. The

variable q is a unitless measure of electric-® eld strength, and

| w (q)|
2

equals the probability for q to be found having a certain

value. The wave function is expressed as w (q) =

|w (q)| exp [i b (q)] where |w (q)| is the amplitude (solid curve)

and b (q) is the phase structure (dashed curve). (From [20].)
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obtained the wave function from which, according to Item

(1) in the de® nition of quantum state, we can deduce the

probability of any variable, even those which were never

measured. We can use this idea to ® nd the probability

distribution Pr (n) for the photon number n in the ® eld.

Given the measured w (q), this probability is simply given by

Pr (n) 5 w *(q)un(q) dq

2

, (17)

where un(q) is the familiar nth energy eigenfunction of the

harmonic oscillator [21]. We plot Pr (n) in ® gure 10 for this

example. Evidently this oŒers a new alternative to standard

`photon-counting’ methods for measuring the probability

for ® nding n photons in the ® eld. In fact, for technical

reasons relating to the e� ciencies of diŒerent detector

types, the tomographic method actually gives higher ® delity

than does the standard one [22]. For example, it has been

used recently to verify the presence of photon pairs in a light

beam created by the `splitting’ of single green photons into

pairs of infrared photons in a crystal [23].

7.3. Ion in a trap

A positive ion (an atom missing an electron) is a charged

particle and can be trapped and held in one place

inde® nitely by using oscillating electric and magnetic ® elds

[24]. The position of the ion oscillates harmonically in space

around the centre of the trap where the energy is lowest.

This ion motion obeys quantum mechanical laws and is

thereby described by a quantum state. Recently experi-

ments have been done to determine the state of an ion’s

motion [25]. A method related to, but not identical to,

quantum tomography was used. At a certain time the

centre of the trap was suddenly shifted to a new position

and the probability that the ion ended up in the ground

state of the shifted trap was measured. By shifting the trap

centre to many diŒerent locations and making this type of

measurement on an ensemble of ions, su� cient information

could be obtained for a complete state reconstruction.

Clever laser techniques were used to prepare ions in the

n = 1 vibrational energy eigenstate state of the trap

potential. Then the above-described method was used to

measure the state and verify the preparation process. The

resulting reconstruction of the Wigner function for an

ensemble of such ions is shown in ® gure 11. The remarkable

feature of this Wigner function is the presence of negative

values at certain points in q, p phase space. This means that

W(q, p) cannot be a joint probability and is proof that the

Figure 10. The photon-number probability distribution for a

strongly attenuated laser ® eld, as determined by inserting the

measured wave function (for example, that shown in ® gure 9)

into equation (17). Results are shown for coherent states

containing on average (a) 0 × 2, (b) 1 × 2, and (c) 3 × 6 photons.

(From [20].)

Figure 11. Experimentally reconstructed Wigner function

W(q, p) for motion of an ion in a trap. Momentum and position

values have been divided by their corresponding root-mean-

square values associated with zero-point motion. Negative-value

regions indicate the absence of a classical description of the ion’s

motion. (From [25].)
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motion of the ions is strongly quantum mechanical, with no

classical correspondence.

7.4. Free atoms and atom optics

At the beginning of this paper we discussed the case of free

particles, since it is conceptually the simplest. On the other

hand the experiments in this case are not so simple and

have not yet been successfully performed in a complete

fashion. The source of the di� culty can be seen by going

back to ® gures 4 and 5. While equation (6) correctly shows

that the probability distribution for position n is given by a

projection integral through the joint x,Px probability, the

actual range of possible projection angles is limited by the

setup shown in ® gure 4. Because t is always positive in the

relation (Px/m)t = Ð x+ n de® ning the projection line, the

angle between the Px axis and the projection line can be

only in the range 0 to p /2. In order to cary out the inverse

Radon transform a range 0 to p is needed. This range can

be accomplished by placing at some z-position a de¯ ection

device which acts like a lens for atoms [26]. This can be

built using recently developed principles of atom optics: a

focused laser beam shifts the potential energy and velocity

of an atom in a spatially dependent way; so if the focus is

properly shaped it can act as a lens for the de Broglie waves

of the atomic motion [27]. You can convince yourself by an

analysis of this geometry that the correct range of

projection integrals can now be obtained [26,28].

Recently a beautiful experiment was performed in which

a partial reconstruction of the Wigner function for free

atoms was achieved [29]. The setup was similar to that

shown in ® gure 4, except that a pair of closely spaced slits

were placed in the beam at the location of the source. This

produced the possibility of atom ± wave interference and

gave an interesting case worthy of reconstruction. A special

`camera’ for atom imaging was used to record the atomic

density pattern, averaged over many hours since at any one

time only one or fewer atoms were present in the

appartatus. The pattern was recorded at many diŒerent

distances from the source, up to two metres. Data for only

a limited range of evolution times (phase-space angles) were

recorded (no lens was used). An incomplete inverse Radon

transform was used to analyse the data; therefore the

reconstructions cannot yield a true Wigner function. Still,

the method does produce striking reconstructed `Wigner-

like’ functions, one of which is shown in ® gure 12. The ® ne

oscillations are a signature of quantum interference

between the atom wave-function components emerging

from the two slits. Within these oscillations are regions of

negativity, indicating departure from a classical joint

probability interpretation.

In spite of the technical di� culty, a complete reconstruc-

tion using atom lenses would be worth performing, as can

be seen by thinking about the analogy between an atom

beam and a light beam. We are fairly familiar with the ideas

of spatial and temporal coherence of a classical light ® eld.

Figure 12. Experimental results of partial reconstruction of a Wigner-like function for free atoms after passing through a pair of

closely spaced slits at the location of the source. Position x is given in units of microns (micrometres), and momentum p is given in units

of Planck’s constant divided by microns. Evidence of the two slits is seen as the two dark bands running nearly vertically (localized in x).

Quantum interference eŒects are present as the rapidly oscillating structure near the centre, which contains both positive and negative

parts. (From [29].)
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Such coherence tells us about the relative timing, or phase,

of the electric (E)-® eld oscillations at two separated space

points x1 and x2, and about whether this relative phase

changes with time. Mathematically this can be quanti® ed

by the product of the ® eld E(x1) times the complex

conjugate E*(x2), averaged over all possible values of E

and E*; this is expressed as á E (x1)E *(x2) ñ , and is called a

correlation function. If the ® eld is written as E(x) =

A(x) exp [ib (x)] then the correlation function is

á A(x1)A(x2) exp [i{b (x1) 2 b (x2)}] ñ and depends on the

phase diŒerence b (x1) Ð b (x2).

For an atom beam the analogue of the correlation

function is given in terms of the set of possible wave

functions which might correspond to the states of subsets of

atoms. This analogue is á w (x1) w *(x2) ñ and is called the

density matrix Ð `density’ because á |w (x)|2 ñ is proportional

to atom density and `matrix’ because it has two indepen-

dent labels x1 and x2. This product of w evaluated at two

diŒerent points is clearly related to the function inside the

integral that de® nes the Wigner function in equation (7). If

you carry out an average over possible pure-state Wigner

functions you obtain á W(x, Px ) ñ . This is, according to

equation (7), the Fourier transform of the density matrix

á w (x 1 x ¢ /2) w *(x 2 x ¢ /2) ñ . This is to say that by using

quantum tomography on an atomic beam we can evaluate

its important wave-coherence properties.

A laser is a device whose operation naturally creates

coherent light, for which á E (x1)E *(x2) ñ is large for large

separations |x1 Ð x2| perpendicular to the beam-propaga-

tion direction. By analogy, a `coherent atom-beam emitter’

would create a coherent, high-density beam of atoms, for

which á w (x1) w *(x2) ñ is large over the full extent of the beam

area. This means that essentially every atom is a part of the

atomic group described by a single wave function w (x), that

is, á w (x1) w *(x2) ñ $w (x1) w *(x2).
Very recently the ® rst source of coherent, high-density

atoms in a beam-like geometry was demonstrated in the

laboratory [30]. A high-density atomic gas was produced by

cooling atoms in a magnetic trap to below the temperature

needed for Bose ± Einstein condensation (BEC) [31], at

which point most of the atoms are in the ground-

vibrational quantum state of the trap potential. Then the

cold gas was launched out of the trap, producing a

travelling pulse of coherent atoms. The pulse produced is

similar in its coherence properties to the light pulse from a

pulsed laser. But is not accurate to refer to the new device

as an `atom laser’ , as has been done, since there is no

`stimulated emission of atoms’ here; atoms cannot be

created and destroyed at low energies. Nevertheless, the

creation of high-density beams of atoms might well prove

to be as revolutionary for science as was the discovery of

the laser in 1960. These ideas, and related ones, are

discussed in articles by K. Burnett [32] and Adams [27] in

Contemporary Physics.

It would be desirable to have a method to characterize

fully the quantum state of a coherent atom-beam emitter.

There is a serious barrier, though, to a straightforward

application of quantum tomography for this purpose. In a

high-density, low-temperature atom beam the atoms do not

progagate independently of one another. They collide and

interact cooperatively. This means that we can no longer

assume free propagation in carrying out our analysis of the

reconstruction problem. The presently known methods

work only for low densities. Back to the drawing board!

8. Particle in an arbitrary potential Ð beyond the harmonic

oscillator

So far I have discussed quantum motion corresponding to

free-particle motion or motion in a harmonic potential. On

the other hand, most motion is not so simple. For example,

the vibration of a molecule that has been strongly excited is

not well approximated by harmonic motion. Is it still

possible to reconstruct its quantum state by observing its

motion?

It turns out that due to special properties of the

SchroÈ dinger dynamical equation the answer to this ques-

tion is yes. If you can measure the probability distribution

Pr (q;t) for particle position q at many diŒerent times t

(ideally all times) then it is straightforward to reconstruct

the state. This is done by using a generalized version of the

Radon inversion transform, given earlier as equation (5).

The details are given in [33].

9. Beyond the Radon-transformation method

It should be mentioned that recently improved mathema-

tical methods have been developed that allow one to obtain

the quantum state from the measured quantum-variable

histograms without using the inverse Radon transforma-

tion. Using these methods the quantum state is found in the

basis of the energy eigenstates, rather than in the position,

or quadrature, basis which has been emphasized in this

paper for simplicity. The new method is more robust

against numerical problems and should be considered by

anyone with a serious interest in this topic. Reviews of this

approach can be found in [22] and in the works by

Leonhardt and by D’Ariano listed in Suggestions for

Further Reading.

10. Conclusions

I have tried to make the SchroÈ dinger wave function a little

less mysterious by showing that its form truly can be

determined from a set of measurements on a collection of

identically prepared particles or other physical systems.

This should allow a ® rmer understanding of the meaning of

w . I called it, along with its transformation rules, an
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information structure. I like this name because it separates

it from the idea of a physical ® eld, such as the electric ® eld.

The name also makes it clear that the wave function is not

the particle itself. This does not mean that the wave

function represents information about a particle which has

some de® nite but unknown values of momentum and

position; rather it represents the maximum knowable

information about how these quantities behave when they

are `measured,’ according to John Bell [34].

None of these conclusions are essentially new to

quantum mechanics, rather they only strengthen QM by

making some of its basic hypotheses more concrete than

had been possible in the past. So to me it seems that it has

been worth doing.

We can return to the question Ð is the concept of wave

function meaningful for a single particle? I believe that it is,

but in a strange way. It should be clear from the discussion

in this paper that if you are given only one particle out of a

collection of many that have been prepared according to a

certain procedure, you cannot measure the corresponding

quantum state. You need the whole collection in order to

carry out quantum tomography. It is also known that

making repeated measurements on the same particle will not

work to determine the state Ð this perturbs it and changes

its state [35]. Nevertheless, it still does make sense to say that

the particle has been prepared `in’ a certain quantum state,

that is `according to’ a certain state-preparation procedure.

I seem to be forced to conclude that a single quantum

particle is fundamentally incapable of carrying with it the

full information about how it was prepared, or, if it does, it

cannot yield up this full information to an observer. It

seems that some information is lost or obscured, even for a

pure state. In contrast, a large collection of identically

prepared particles does carry su� cient information so that

by a set of suitable measurements on a limited set of

variables an experimenter can fully determine the state.

Then the transformation rules allow him or her to predict

with con® dence, not the behaviour of any one particle, but

the statistical behaviours of all of the properties of the

group. This information is preserved and transmitted quite

sharply. Such is the information structure that nature

presents us with.
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