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Generation of Fock states in a superconducting
quantum circuit
Max Hofheinz1, E. M. Weig1{, M. Ansmann1, Radoslaw C. Bialczak1, Erik Lucero1, M. Neeley1, A. D. O’Connell1,
H. Wang1, John M. Martinis1 & A. N. Cleland1

Spin systems and harmonic oscillators comprise two archetypes in
quantum mechanics1. The spin-1/2 system, with two quantum
energy levels, is essentially the most nonlinear system found in
nature, whereas the harmonic oscillator represents the most lin-
ear, with an infinite number of evenly spaced quantum levels. A
significant difference between these systems is that a two-level
spin can be prepared in an arbitrary quantum state using classical
excitations, whereas classical excitations applied to an oscillator
generate a coherent state, nearly indistinguishable from a classical
state2. Quantum behaviour in an oscillator is most obvious in Fock
states, which are states with specific numbers of energy quanta,
but such states are hard to create3–7. Here we demonstrate the
controlled generation of multi-photon Fock states in a solid-state
system. We use a superconducting phase qubit8, which is a close
approximation to a two-level spin system, coupled to a microwave
resonator, which acts as a harmonic oscillator, to prepare and
analyse pure Fock states with up to six photons. We contrast the
Fock states with coherent states generated using classical pulses
applied directly to the resonator.

The difficulty of generating quantum number states in a linear
resonator has been overcome by interposing a nonlinear quantum
system, such as an ion, between a classical radiation source and the
resonator. A classical pulse applied to the nonlinear system creates a
quantum state that can subsequently be transferred to the resonator.
Repeating this process multiple times results in a quantum number
state in the resonator. Such a method was used to deterministically
generate Fock number states for the mechanical motion of ions in a
harmonic ion trap3. The analogous deterministic creation of Fock
states in electrodynamic resonators has only been demonstrated for
states with one or two photons5,6, although Fock states with larger
photon numbers have been recorded using projective measure-
ments7,9. The deterministic creation of pure Fock states in a solid-
state system, as described here, represents a significant step forward.
Solid-state systems permit highly complex integrated circuitry to
employ such bosonic states in, for example, quantum computational
architectures. The integration of microwave resonators with solid-
state qubits has recently attracted much interest10–16, but to date such
implementations have only used zero or one photons in the res-
onator, putting the system in a regime where the bosonic nature of
the linear resonator is not apparent.

The method we use here to generate multi-photon Fock states is
scalable to arbitrary photon numbers3,17, limited only by decoherence
times and the speed at which photons can be transferred to the
resonator. We generate the Fock states using the qubit as an inter-
mediary between a classical microwave source and the resonator. The
Fock states are compared to coherent states generated by driving the
resonator directly with a classical radiation pulse. In both cases we

measure the resonator state through the photon number dependence
of the qubit–resonator coupling, monitored using the qubit18. The
complexity of the pulse sequences used to create and analyse the
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Figure 1 | Device description and spectroscopy. a, Photomicrograph of a
phase qubit (left) coupled to a co-planar waveguide resonator (right). The
resonator has a total length of 8.76 mm. A microwave line capacitively
coupled to the qubit is used to inject individual photons into the qubit. A
second capacitor between the qubit and resonator couples these two
quantum systems, with the resonant interaction controlled by tuning the
qubit using a flux bias. The resonator can also be directly excited using a
second capacitively coupled microwave line. b, Spectroscopy of qubit and
resonator. The false-colour images show the excited state probability Pe of
the qubit as a function of driving frequency and flux bias in units of the flux
quantum W0 5 h/2e, where e is the elementary charge. A dark line is seen
when the frequency of the microwave drive matches an eigenfrequency of the
qubit–resonator system. An avoided crossing appears when the qubit is
tuned through the resonator frequency nr. A detailed view of the avoided
crossing is shown in the right-hand subpanel, superposed with a fit (black-
and-white dashed line) to the Jaynes–Cummings model in equation (1). The
fitting parameters are the magnitude of the splitting V/2p5 36.0 6 0.6 MHz
(s.e.m. uncertainty; vertical bar) and the resonator frequency
nr 5 6.5666 6 0.0005 GHz (s.e.m. uncertainty; dotted horizontal line). The
dotted vertical lines respectively indicate the qubit operating points when
the qubit–resonator coupling is on and off.
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resonator states, and the high fidelity of the resulting measurements,
demonstrate a significant advance in the control of superconducting
quantum circuits.

Our experimental system (Fig. 1a) is based on the superconducting
phase qubit, a device developed for quantum computation8. To a
good approximation this qubit is represented by a two-level spin
system, with ground state jgæ and excited state jeæ. These states are
separated in energy by a transition frequency nq that may be tuned
from about 6 to 9 GHz using an external flux bias. With the applica-
tion of classical microwave pulses, the quantum state of the qubit can
be fully controlled19. The qubit state is measured by a destructive
single-shot measurement, achieved by applying a flux-bias pulse to
the qubit. This pulse causes the state jeæ to tunnel to a state that can be
easily distinguished from the state jgæ with a flux measurement per-
formed using a read-out d.c. superconducting quantum interference
device (SQUID)20. The measurement visibility, that is, the difference
between the tunnelling probabilities for states jeæ and jgæ, is 80%.
Decoherence of the qubit is characterized by measurement of the
energy relaxation time T

q
1 < 550 ns and phase coherence time

T
q
2 < 100 ns.
The qubit is coupled to a high-Q-factor superconducting co-pla-

nar waveguide resonator21, which serves as a harmonic oscillator,
with a resonance frequency nr 5 6.5666 6 0.0005 GHz. The coupling

is achieved using a capacitor, which sets the coupling strength
V/2p5 36.0 6 0.6 MHz, measured using spectroscopy22 (Fig. 1b).
Achieving strong coupling (V? 1/T1) between a phase qubit and a
resonator is straightforward23,24, as the qubit characteristic imped-
ance of ,30 ohms is well matched to the resonator characteristic
impedance of ,50 ohms. The coupling between the qubit and the
resonator can be effectively turned off by biasing the qubit well out of
resonance, at a frequency noff 5 6.314 GHz, where the coupling is
effectively reduced by a factor of (nr 2 noff)

2/(V/2p)2 < 50.
Microwaves can also be injected directly into the resonator through
a separate microwave feed line. The decoherence times of the res-
onator were measured to be T r

1 < 1ms and T r
2 < 2ms < 2T r

1 (E. M.
Weig et al., manuscript in preparation). All measurements were per-
formed in a dilution refrigerator operating at 25 mK, which is much
less than hnr/kB and hnq/kB (where kB and h are the Boltzmann and
Planck constants, respectively), so thermal noise in this system is
negligible.

When the qubit and resonator are tuned off resonance, such that
jnr 2 nqj?V/2p, no photons are exchanged between the qubit and
resonator. On resonance, for jnr 2 nqj=V/2p, energy can be
exchanged between the two systems, and the state of the system
can oscillate. The dynamics of energy exchange between the res-
onator and qubit can be approximated within the rotating-wave
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Figure 2 | Preparation and measurement of Fock states. a, Quantum
program and b, pulse sequence for the qubit microwave signal and flux bias
used to implement it. An excitation is created in the qubit with a resonant
microwave pulse and then transferred to the resonator by tuning the qubit
into resonance for half an oscillation period. This sequence is repeated until
the desired photon number n is reached; n 5 3 in the example depicted here.
The length of the tuning pulse decreases as 1

� ffiffiffi
n
p

. To analyse the resonator
state the qubit is tuned into resonance for a variable interaction time t and
the qubit state is finally read out by applying a high-flux-bias pulse that
makes the excited state tunnel into a state which can be easily distinguished
from the ground state. c, Plot of the probability of the excited qubit state Pe

versus interaction time t for Fock states with n 5 1, …, 6. The time traces

show sinusoidal oscillations with a period that shortens with increasing
photon number n. d, The false-colour image shows the Fourier amplitudes of
the traces in c, obtained with a 100-ns rectangular window function after
subtracting the average value. Each Fourier transform displays a clear peak
at the n-photon oscillation frequency Vn, indicating the high purity of the
Fock states. The peak maxima are marked, with the error bars indicating
their 23-dB points. The white curve is the expected

ffiffiffi
n
p

scaling, adjusted to
fit the data using the coupling strength V/2p5 40 6 1 MHz (s.e.m.
uncertainty), which is slightly higher than that determined from spectro-
scopy. In addition, the actual photon number scaling of the oscillation
frequency is slightly slower than

ffiffiffi
n
p

. Both deviations can be attributed to
detuning of the qubit with respect to the resonator, as discussed in the text.
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approximation by the Jaynes–Cummings model Hamiltonian25

Hint~
BV

2
aszza{s{

� �
ð1Þ

where a{ and a are respectively the photon creation and annihilation
operators for the resonator, s1 and s2 are respectively the qubit
raising and lowering operators and B5 h/2p. If the system is pre-
pared in the state jgæ jnæ (qubit in the ground state, n photons in the
resonator), the system will oscillate between this state and the state
jeæ jn 2 1æ at an angular frequency Vn 5

ffiffiffi
n
p

V. This
ffiffiffi
n
p

dependence
of the oscillation frequency is the cavity quantum electrodynamic
equivalent of stimulated emission: a photon is transferred between
resonator and qubit more rapidly when more photons are present in
the resonator. This increase in oscillation frequency is the key to our
measurement of the resonator state18.

In order to prepare the resonator in a Fock number state, we begin
with the qubit detuned from the resonator and wait a time much
longer than T r

1 or T
q
1 , allowing both qubit and resonator to relax to

their respective ground states jgæ and j0æ. As shown in Fig. 2a, b, we
then apply a gaussian microwave pulse to the qubit at nq 5 noff, with

an amplitude and duration that are calibrated to yield the state jeæ.
We obtain ,98% fidelity for this operation when implemented with
properly shaped pulses26. The qubit and resonator are then tuned into
resonance for a time p/V1 5p/V so that the excitation in the qubit is
transferred to the resonator. The time and amplitude of the tuning
pulse are adjusted to yield the best state transfer, determined by
maximizing the probability of finding the qubit in the state jgæ
directly after the pulse. A second microwave pulse is then applied
to the qubit to re-prepare it in the state jeæ. The qubit and resonator
are brought back into resonance, but for a reduced time p/V2 5 p/ffiffiffi

2
p

V. After this procedure has been repeated n times, with an appro-
priate reduction in the transfer time for each successive photon, we
obtain a final state jgæ jnæ corresponding to an n-photon Fock state in
the resonator.

To analyse the resonator state, we tune the qubit and resonator
into resonance for an adjustable interaction time t and then read out
the qubit state. The probability Pe(t) of finding the qubit in the state
jeæ is obtained by averaging 3,000 pulse sequences for each interaction
time t. The probability is expected to oscillate in the absence of
decoherence according to2
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Figure 3 | Preparation and measurement of coherent states. a, Quantum
program and b, pulse sequence of the resonator microwave drive and the
qubit bias used to implement it. A gaussian pulse with 100-ns full-width at
half-maximum and varying amplitude is directly applied to the resonator
and creates a coherent state |aæ. The qubit, in its ground state, is then
brought into resonance for a variable interaction time t and measured,
exactly as for the Fock state measurements. c, Plot of the excited state
probability Pe versus interaction time t for six different microwave
amplitudes. The time traces are aperiodic because of the irrational ratios in
the oscillation times for the different photon number states | næ comprising
the coherent state. d, Fourier transform of the data in c, obtained with a 300-

ns rectangular window function after subtracting the average value. Darker
colours indicate higher amplitudes. The data have been smoothed in the
drive pulse direction with a s 5 0.2-mV gaussian low-pass filter. The Fourier
spectrum reveals a sharp peak at each number state frequency for
n 5 1, …, 11. e, Frequencies of the n-photon Fourier peaks compared to the
expected

ffiffiffi
n
p

scaling, adjusted to fit the data using the coupling strength
V/2p5 36.0 6 0.3 MHz (s.e.m. uncertainty), which matches that
determined from spectroscopy. As in Fig. 2d, the actual scaling is slightly
slower than

ffiffiffi
n
p

. The error bars indicate the 23-dB points of the Fourier
transform peaks.
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Pe tð Þ~
P?

n~1

Pn

1{cos Vntð Þ
2

ð2Þ

where Pn is the probability of initially having n photons in the res-
onator. For a pure Fock state jnæ, Pe oscillates at the frequency Vn/2p.
When several different jnæ states are occupied, the time dependence
of Pe(t) becomes more complex, owing to the irrational ratios of the
oscillation frequencies Vn. Note that although P0 does not enter
equation (2) directly, it is given by the time average

�PPe~
P?

n~1

Pn

2
~

1{P0

2
ð3Þ

The experimental time dependence of Pe(t) is displayed in Fig. 2c for
Fock states with n 5 1, …, 6. The time traces are approximately sinus-
oidal, indicating from equation (2) that for each initial state, one
photon number dominates in the resonator state. The oscillations
have large amplitudes for n 5 1, 2, 3, and gradually decrease for
n 5 4, 5, 6. Both the amplitude and the decay time decrease with
increasing photon number n because the lifetime of an n-photon
Fock state decreases as T r

1 /n (ref. 27) and the time needed to create
such a state increases as n. For n 5 6, the lifetime of the Fock state and
the length of the preparation sequence are comparable.

The period of the oscillations clearly decreases with n. The period
of the state j4æ, for example, is approximately half the period of the
state j1æ, as expected from the

ffiffiffi
n
p

scaling of the oscillation frequency.
A more quantitative analysis of this dependence is shown in Fig. 2d,
where the Fourier transforms of the time traces are plotted: each
displays a clear peak at a single frequency, which scales approximately
as

ffiffiffi
n
p

V/2p. The actual frequency dependence is slightly slower thanffiffiffi
n
p

, and the coupling strength V/2p5 40 MHz is slightly larger than
the one obtained from the splitting in Fig. 1. Both deviations can be
explained by our having used an ‘on’ operating point slightly detuned
from the minimal splitting in Fig. 1b, yielding slightly higher oscil-
lation frequencies. The oscillation frequencies for higher photon
number states, however, are less affected by detuning because they
are more strongly coupled to the qubit. Indeed, for this experiment
we choose the on-point such as to maximize state transfer between
the qubit and the resonator. This on-point is slightly off resonance
owing to imperfections in the tuning pulses.

We next highlight the non-classical features of the Fock states by
comparing them with coherent states, the quantum equivalent of
classical oscillations, that are created when a harmonic oscillator is
driven directly with a classical signal. To generate such states we drive
the resonator with a gaussian-shaped resonant microwave pulse with
a full-width at half-maximum of 100 ns (Fig. 3a, b) and a range of
amplitudes. The qubit is not involved in this state preparation and
stays in the ground state. The read-out of the resonator state is per-
formed using the qubit, exactly as for the Fock state analysis.

In a coherent state the amplitude and phase of the oscillation are
well defined, but the number of photons is not. A coherent state is a
superposition of different Fock states for which the occupation prob-
ability Pn of an n-photon Fock state follows a Poisson distribution
that depends on the average photon number a:

Pn að Þ~ ane{a

n!
ð4Þ

As a result, the time dependence of Pe(t) (Fig. 3c) is strikingly dif-
ferent from that observed for the Fock states. At low drive amplitude,
Pe(t) is periodic but has low visibility because for a= 1 all Pn for
n . 1 are vanishingly small and P1 itself is small. At higher drive
amplitudes, the time traces display a strong initial ringing with fast
collapse, followed by a revival—a characteristic feature of a coherent
state coupled to a two-level system28,29. During the revival, the time
dependence is irregular because the coherent state is composed of
different Fock states that oscillate with irrational frequency ratios.

The decomposition of the coherent states into Fock states becomes
very clear in the Fourier transforms of the time traces (Fig. 3d). The

oscillation frequencies for different photon number states appear as
sharp vertical lines, indicating the underlying quantum nature of the
coherent states. With increasing pulse amplitude, the lines corres-
ponding to higher photon numbers become more pronounced, and
at any given pulse amplitude there are several sequential photon
number states with significant occupation probabilities. In Fig. 3e,
the oscillation frequencies corresponding to the maxima of these
lines are plotted versus the corresponding photon number. The
dependence on photon number matches that observed previously
in the analysis of the Fock states.

These data also show good quantitative agreement with the
expected Poisson distributions. In Fig. 4 we plot the photon number
state probabilities Pn obtained from the Fourier amplitudes along the
dashed vertical lines in Fig. 3d. Their dependence on drive amplitude
agrees very well with the Poisson distributions, which are plotted as
solid lines. The Poisson distribution for each photon number n has
been scaled by a visibility (Fig. 4 inset). The visibility for n 5 0 is close
to 100%. The visibility for higher photon number states is lower
because the Fourier amplitude is reduced by decoherence during
the interaction time of 300 ns. We find that shorter interaction times
yield much higher visibilities, but at the cost of lower frequency
resolution in Fig. 3d, e.

We note that, unlike that for a pure Fock state, the photon number
distribution for a coherent state does not reveal the entire quantum
description of the resonator state, because a number state analysis
cannot by itself distinguish a statistical mixture from a pure coherent
state. A full quantum analysis would involve a complete tomographic
measurement, yielding, for example, the Wigner function30. Given
the high fidelity of our Fock state measurements and the excellent
agreement with the coherent state analysis, we believe that such an
experiment should be possible in the near future.

In conclusion, we have created multi-photon Fock states for the
first time in a solid-state system. The highest photon number we have
achieved to date, n 5 6, is limited only by the coherence times of the
qubit and the resonator. In our experiment, the Fock states are cre-
ated on demand in a completely deterministic fashion. This presents
the possibility of using complex bosonic states in solid-state-based
quantum algorithms, which until now have only involved spin-1/2-
like (fermionic) states.
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vertical lines, corrected for the measurement visibility of 80% and
transformed into photon number probabilities using equations (2) and (3).
The solid lines are the photon number probabilities predicted by the Poisson
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corresponding Fourier amplitudes.
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