PHYS514 Fall 2013

Homework 4 due 10/15

1. von Neumann entropy

The von Neumann entropy S is defined as $S = -tr(\rho \ln \rho)$. If ρ is written in terms of its eigenvectors $\{|\lambda_i\rangle\}$, then $S = \sum_i \lambda_i \ln \lambda_i$, where $\{\lambda_i\}$ are the eigenvalues of ρ .

- a. What is S for a two-level system in the state $|\psi\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$?
- b. What is S for a two-level system in the mixed state $\rho = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$?
- c. Consider the entangled state of two two-level systems $|\psi\rangle = \frac{1}{\sqrt{2}}(|+\rangle_a|-\rangle_b |-\rangle_a|+\rangle_b$). Compute ρ and the reduced density matrices ρ_a and ρ_b . What is S for ρ , ρ_a , and ρ_b ?
- d. Consider the non-entangled state of two two-level systems $\frac{1}{\sqrt{2}}(|+\rangle_a + |-\rangle_a) \otimes \frac{1}{\sqrt{2}}(|+\rangle_b |-\rangle_b)$. Compute ρ and the reduced density matrices ρ_a and ρ_b . What is S for ρ , ρ_a , and ρ_b ?

What general properties can you infer about the von Neumann entropy? How might it be useful for characterizing entanglement?

- 2. Foot 1.8...classical radiative lifetime
- 3. Foot 7.5...saturation
- 4. Foot 7.6...transitions in hydrogen