PHYS 523 :: Physics Illinois :: University of Illinois at Urbana-Champaign

Tuesdays, Thursdays, 1 pm - 3:50 pm
Loomis 262

This is the home page for Instrumentation and Applied Physics Project.

JLCPCB video

Instructor: George Gollin.

Teaching assistant/grader: Chad Lantz.


3D printers

Please bring to every class:

There are no required texts for Physics 523. We will assemble starter "kits" of parts and tools for each of you in class.

An introduction to UIUC Master of Engineering in Instrumentation and Applied Physics

Physics 523 is the central course in the Illinois professional master's in Instrumentation and Applied Physics. This is a two-semester project-based program, and you will participate in Physics 523 for both semesters of the program. Through a mix of laboratory, classroom, and field work, we will teach you to take a collaborative project from conception and design through planning, prototyping, calibration, analysis, and documentation.

Note that Physics 524 ("Survey of Instrumentation and Laboratory Techniques") is a corequisite and must be taken during the same semester as Physics 523. In Physics 524 we will teach you about various design and analysis tools that you'll need to use in Physics 523.

A typical project will comprise a suite of sensors managed by a microcontroller that transmits data over a radio link to a base station. Supervised by UIUC faculty, your project group will design and build your device's circuits and printed circuit boards. You will write data acquisition, calibration, and offline analysis code. You will fabricate parts as necessary on 3D printers. Oral presentations̶ at mid-year, then at project completion, will be complemented by a detailed technical report upon conclusion of the project.

We emphasize breadth of knowledge and experience so that you can step into leadership roles as initiators and managers of projects.

Projects, some done at the request of industry partners but guided and supervised by Illinois staff, will develop your skills in a wide variety of technical areas, including circuit design and fabrication, mechanical engineering and rapid prototyping, embedded systems design, project planning, data analysis, and proper reporting and documenting of the project's progress and outcome.

You will become confident in your ability to participate in all aspects of a project. You will get to know (and work closely with) your teachers, many of whom will be tenured UIUC professors.

But what about post-program employment? Here are encouraging data from the American Institute of Physics.

See www.aip.org/statistics/reports/physics-masters-oneyear-after-degree-161718 and www.aip.org/statistics/data-graphics/startingsalaries-exiting-masters-one-year-after-degree-classes-2016-2017.

Physics 523 course description

In this two-semester course students will engage in the collaborative design and execution of a year-long Instrumentation and measurement-intensive technical project. Required activities will include a written project proposal of work to be undertaken, informal group-generated oral presentations on technical issues, periodic formal written progress reports, a final project oral presentation, and a final project paper. The set of projects might include investigations suggested by industry partners. There will be two class meetings per week, each of three hours duration. In addition to the project work, we will bring in local experts to discuss a number of relevant topics with the class; these are shown in the Topics page. Note that readings will consist primarily of technical materials and documentation by the producers of components used by individual projects. As a result, readings and external materials will vary from group to group.

Learning objectives

As a result of completing this course, students will be able to

Technical skills mastered by students during the course of a two-semester project

Supported two-semester projects will require students to master all of the following technical skills:

Each project will be a "one-off," a unique investigation that might have the practical impacts of improved efficiencies and profitability for a commercial venture. To be more concrete, here is one particular project a group could pursue.

Some sections of the railroad tracks between Chicago and New Orleans are so uneven that a passenger standing in the aisle of a passenger train can be thrown off his or her feet. Intelligent trucks—the wheel assemblies upon which trains ride—could be programmed to compensate for track irregularities if detailed (and frequently updated) maps of track imperfections were available. But another approach might be to measure irregularities in real time with sensors in the lead car, then transmit the information to the trucks in successive cars. The effect of roadbed imperfections might depend on load, train speed, recent weather conditions, and a whole host of other variables. It would be interesting to instrument a passenger train to investigate the feasibility of this approach.

A project group could install on a passenger train a dozen data loggers, each with a GPS module, a "9-axis accelerometer,"" and other sensors. The precise cross timing of multiple GPS-enabled devices might yield accelerometer data that would allow determination of the feasibility of a no-map correction system. This project would be well-suited for collaborative investigation by four M. Eng. students. Two semesters should be an adequate amount of time for them to design and execute the project.

Other projects should be designed with similar scope and complexity. It will be important for course staff to offer guidance and suggest adjustments early in the first semester as each group constructs a project proposal, timelines, dependencies, and so forth. This will allow us to make sure projects are appropriate for the M. Eng. degree.

Meeting times

Students will spend approximately six hours per week (Tuesday, Thursday 1:00 - 3:50) in lecture and faculty-supervised laboratory work. Additionally, individual project groups will have informal conferences with course staff throughout both semesters as necessary.

Credit and grading

Students must register for this course in consecutive fall and spring semesters for a total of 8 credit hours. Grading is by letter.

Academic integrity and our policy on the use of artificial intelligence tools

All activities in this course, including documentation submitted for petition for an excused absence, are subject to the Academic Integrity rules as described in Article 1, Part 4, Academic Integrity, of the Student Code.

But what about the use of an A.I. tool like ChatGPT to generate written material that you submit as your own work, or to generate code that you use in programming your devices or analyzing your data? We'll consider that to be akin to plagiarism, in which you submit as your own work material that you did not actually create yourself. It is cheating, and is absolutely forbidden.