
Acoustic characterization and optimization
of a Krannert Center dance studio

Colton Dudley,∗ Josh Jacobsen,† Neng Ji,‡ and Christian Stanley§

(Dated: November 14, 2023)

The Krannert Center for the Performing Arts (KCPA) at the University of Illinois Urbana-
Champaign serves as a showcase for fine arts and a place for students to learn about music, dance,
and performance. However, one of the dance studios suffers from a very long reverberation time that
makes course instruction and music rehearsal a significant challenge. In this project, we are creating
devices that will assist in the characterization of acoustic feedback in this room. This report will
discuss some basic theory of acoustics, instrumentation, data analysis methodology, and how we
plan to minimize the room’s reverberation time.

I. INTRODUCTION

A. The Krannert Center

Opened in 1969, the Krannert Center for the Perform-
ing Arts (KCPA) is the University of Illinois Urbana-
Champaign’s (UIUC) performing arts complex. It has
several state of the art performance facilities, with a com-
bined capacity of over 4000, as well as many workshops
and rehearsal spaces.

FIG. 1. The Krannert Center for the Performing Arts [1]

.
Previously, UIUC Physics students have measured

acoustic properties of the ”acoustically perfect” KCPA
great hall. However, we thought it would be beneficial
to quantify the acoustic characteristics of the less perfect
rehearsal spaces with the intent of improving them.

For this project we are focusing on the dance studio,
room 2-500, in the basement of the KCPA. While primar-
ily a dance studio, this room is also used as a performance
space for both dancing and speaking, often with live mu-
sic from a grand piano and a drum kit. The room itself
is essentially a large, concrete, box which gives rise to
awful acoustic properties. Initial qualitative assessments

∗ dudley3@illinois.edu
† joshuaj8@illinois.edu
‡ nengji2@illinois.edu
§ cs135@illinois.edu

from standing in the room led us to believe that the re-
verberation time must be several seconds, with vocals so
muddied that it was difficult to understand each other,
and exceptionally poor performance in the lower frequen-
cies such as dancers stomping their feet. Ideally we would
like to improve the quality of sound in this room, while
minimally changing the brick wall aesthetic.

FIG. 2. Floor plan of the Krannert Center stage floor includ-
ing dance studio 2-500 [2].

2

FIG. 3. KCPA dance hall as seen from a wall opposite to the
audience.

FIG. 4. The dance hall as seen from the front of the audience
seen in Figure 3.

B. Theory

Prior to improving the sound quality of the dance stu-
dio, it is necessary to quantify it. The ISO 3382 lays
out several parameters for quantitatively describing the
acoustics of a room. We are most interested in the the
reverberation time, RT60, which is defined as the time
required for the sound pressure level (SPL) of a tone to
decrease by 60 dB [3]. While the ’ideal’ RT60 time is
a subjective matter, typical RT60 times for performance
spaces are 1.5-1.8 s [4].

In a room, the decay of sound is typically facilitated
by absorption,

A =
∑

Siαi (1)

Where A is the total absorption of the room measured in
sabins, S is the area of an absorbing surface in the room,
and α is the surface’s absorption coefficient. This can be
used to empirically determine the RT60 of a room using
Sabine’s formula,

RT60 = 0.049
V

A
(2)

FIG. 5. Schematic of the tone generation board.

Where V is the volume of the room. We could estimate
the RT60 of the room using this formula, and likely will,
however it would be preferable to more accurately mea-
sure the rooms acoustics experimentally.

II. METHODS

Two board designs are being used for this project.
Both of which are relatively simple. The first, which we
call the tone generation board, generates a sine wave tone
five times at a frequency specified by a keypad input. The
tone generation board generates sound such that there is
enough time for the listening board to record both the
tone as it’s being generated and the reverberation of the
tone. We found that about 1.5 seconds of duration with
6 second gaps gives the best balance.
The second, which we call the listening board, contin-

uously listens for a dominant frequency that stands out
from any background noise. If a dominant frequency is
heard for a certain duration of time, the board starts to
record data onto a micro-SD card.

A. Tone Generation

The tone generation board consists of an Adafruit
Feather M0 Express Adalogger, Adafruit MAX9744 Class
D amplifier (powered by four AA batteries), a poten-
tiometer (for volume control), Adafruit Keypad Model
1824, and a 20 watt 4 Ohm full range speaker from
Adafruit. The circuit schematic is shown in Figure 5
along with a picture of the board itself in Figure 6.
The Adafuit MAX9744 amplifier communicates with

the Adalogger over an I2C protocol. It has a built-in
potentiometer for volume control; however, jumpers on
the board have to be soldered for this to be enabled.
This would disable digital control of the output volume
[5]. For our purposes, we use an external potentiometer
to keep our design as flexible as possible.
The speaker is an Adafruit model XS-GTF1027. It

3

FIG. 6. Picture of the tone generation board.

is capable of generating tones between 60 Hz to 24 kHz
[6], which is well within the range of frequencies we will
test. It is connected to the right speaker output on the
amplifier.

Before emitting a tone, the tone generation board waits
for an input from a user. The user inputs a desired fre-
quency and submits it with ’#’. So if a tone of 440 Hz is
needed, the user will type in ’440#’. The specified tone
is then generated for 1.5 seconds five times with a pause
of six seconds between trials.

An early version of the C++ code used to generate
the sound created a square wave. There were two pos-
sible approaches to this. The Arduino IDE contains a
built-in tone function that generates a square wave at a
frequency and for a duration specified by the user. Alter-
natively, we could generate the tone by ’manually’ telling
the Adalogger to switch an output pin HIGH or LOW.
The code for these processes follows:

//Tone gene ra t i on with bu i l t−in func t i on
f l o a t durat ion = 1500 . ; \\Duration in ms

//10 r ep r e s en t s the output pin ,
// f f o r f requency .
tone (10 , f , durat ion) ;

//Manual tone gene ra t i on
f l o a t time ;
f l o a t d ;
f l o a t dt = 1/ f ;
whi l e (d < 1 . 5){

//Write to pin #5 . . .
d i g i t a lWr i t e (5 , HIGH) ;
de lay (dt / 2) ;
d i g i t a lWr i t e (5 , LOW) ;
de lay (dt / 2) ;
time = m i l l i s () ;
d = time /1000 . ;
S e r i a l . p r i n t l n (d) ;

}

When using the square wave, we were faced with sig-

nificant challenges. The electret microphone was unable
to pick up the fundamental frequency. This created tim-
ing issues between generating and listening to the tone.
We found it was particularly sensitive to higher order
frequencies (generally the third or fourth harmonic). To
prevent this, we decided to generate a sine wave in place
of the square wave.
The first approach was to simply calculate the voltage

output using the built-in sine and micros functions from
the Arduino IDE. However, for frequencies greater than
roughly 100 Hz, the resolution of the sine wave deteri-
orated significantly. We were able to see this from an
oscilloscope.
The method now used to generate the sine wave is as

follows. After taking an input from the user, the program
generates ten periods of a sine wave at the user specified
frequency. It then reads through this array and finds the
closest frequency it can ’actually’ generate (this is based
on the speed and memory of the Adalogger). An empty
array is initialized and filled with values of one period
of a sine wave at the allowed frequency. The Adalogger
then repeatedly reads the one period of the sine wave and
outputs the voltage equivalent to the built-in digital-to-
analog converter. This program is far more sophisticated
and is not included in this report, but is available upon
request.
As a test, an exponential decay was added halfway

through the tone generation to artificially dampen the
sound. This was done to test the accuracy of our rever-
beration time calculations. A drawback to this test was
the frequency of the generated sound was significantly
changed. While a solution to this problem has not been
successfully tested, we were still able to estimate the re-
verberation time to a tenth of a second. This damping
factor was removed once we tested our devices in the
dance hall.

B. Data Taking

The data taking is carried out by an Adafruit Feather
M4 Express alongside an Adafruit Electret Microphone
Amplifier. The Adafruit electret microphone is ideal as
it has a large dynamic range, advertised to be 20 Hz
to 20 kHz, and is inexpensive compared to dynamic mi-
crophones. The Adafruit chip also includes a Maxim
MAX4466 amplifier, which is an op amp purpose built
for amplifying microphones. This allows us to plug the
microphone directly into the Arduino’s analog inputs as
shown in FIG. 7.
The frequency response of microphone and amplifier

can be seen in FIG. 9 and FIG. 10. These response curves
are not of high importance to us as we are only investi-
gating one frequency at a time, it is useful to understand
how capable the hardware is of picking up a wide range
of frequencies.
The Feather M4 was chosen to take data over the M0

primarily due to it’s flash memory. It is too slow to con-

4

FIG. 7. Schematic of the listening board.

FIG. 8. Picture of the listening board.

tinuously write data to the SD card over SPI, the length
of samples is limited by the size of the chips FRAM. The
M4 has 512 KB of FRAM, allowing us to store over 2.5
seconds of 12 bit analog input data taken at 37 kHz. The
M0 only has 256 KB of FRAM, which would half our data
taking length giving us an unfeasible window in which to
start taking data. In addition, the M4 has a 120 MHz
clock allowing it to run considerably faster than the M0
which only has a 48 MHz clock.

In practice, the increased speed is not utilized as analog
input data is read using Arduino’s analogRead() function
which is considerably slower than the max speed of the
analog inputs. In playing with the analog inputs we were
able to take data at 44.1 kHz (Red Book Audio) and
faster, but this proved to be overkill for our applications
as this is above the upper frequency of human hearing
and the microphone can only record 20 kHz. In addition,
it was necessary to bin the resulting spectrogram when
recording at higher frequencies as the resolution was too
high to pick out meaningful data.

Finally, after taking 86000 12 bit samples to fill the

FIG. 9. The frequency response of the CMA-4544PF-W elec-
tret condenser microphone in the Adafruit electret micro-
phone chip. [7]

FRAM, the data is saved to a CSV file on a micro SD
card via an Adafruit Micro SD card breakout board con-
nected with the SPI protocol [8]. We also considered
using an Adafruit SPI Non-Volatile FRAM Breakout [9]
in order to take more data per run without detrimentally
decreasing the sampling rate, but this was deemed un-
necessary for our current measurements. Both the SD
card reader and the FRAM breakout can be seen in FIG.
8.

FIG. 10. The gain and phase frequency response of the
MAX4466 microphone preamplifier in the Adafruit electret
microphone chip. [10]

C. Triggering

Because we are limited in the length of our data sets, it
is necessary to implement a method to initialize the data
taking on the listening devices. It is not necessary to

5

synchronize the microphone boards to each other because
we are not interested in the phase of any signals. It is
also unnecessary to synchronize the microphone board
with the tone generator as the shutting off of the tone can
be deduced from careful analysis of the data. Therefore,
the boards can simply start taking data when they hear a
tone. It is not sufficient to wait until the volume (or RMS
amplitude) hits a trigger level, as different boards could
be placed in quieter or louder areas, and other noises
such as speech could begin the data taking. Instead the
boards are triggered by hearing the same frequency tone
for a consecutive period of time.

This is done by taking a set amount of data and then
taking a Fourier transform to deduce the peak frequency.
The Fourier transform is implemented with Arduino’s ar-
duinoFFT library. The sample size for a FFT must be
a power of 2, so the boards typically take 1024 or 2048
samples corresponding to 0.1 or 0.2 s. The boards then
wait for 3 or 4 consecutive samples to be within a de-
sired frequency gap of each other before beginning data
taking. A diagram of this method can be seen in FIG.
11. The tolerance in frequency is typically set to 2 Hz;
a number determined to work well through trial and er-
ror. Additional measures can be put in place to reduce
the chances of unwanted triggering, such as a limit of
expected frequencies (noise sound is typically below 200
Hz). However, this method is not foolproof, and param-
eters must be tweaked depending on the noisiness of the
room, and possibly the frequency being generated.

FIG. 11. Flow chart of the data taking program.

III. ANALYSIS

The decibel (dB) is a logarithmic unit used to measure
the SPL of an sound wave or the power level of an elec-
trical signal by comparing it with a given reference level.
The dB scale is a convenient way to express both very
large and very small values in a more manageable form.
Decibel defined as:

SPL = 20 log10(
P

P0
) (3)

Where P0 is reference pressure value and P is actual pres-
sure value To estimate the time at which a signal reaches
-60 dB in pressure, we employ two different curve fitting

equations that model the signal behavior in their respec-
tive domains. The first is a linear equation applied when
the signal is above the reference pressure level P0, and the
second is an exponential decay function applied when the
signal is below P0. We define our curve fitting equation
as:

1st curve fitting equation : mx+ b for x0 ≤ P0

(4)

2nd curve fitting equation : ae(x−p)∗k + o for x0 ≥ P0

(5)

Upon analysis, we determine that m is zero, which in-
dicates constant pressure before ringing down, suggest-
ing no change in the signal’s power with respect to time
within this domain. Moreover, the intercept b is equiva-
lent to a, the initial value in the exponential model. This
implies that at the point P0, the power level of the signal
transitions smoothly from the constant value we are not
interesting the parameter p and a. In order to estimate
the time at which the SPL has decreased by -60 dB, we
are more concerned with parameter k a; By setting the
exponential equation equal to the change in SPL corre-
sponding to -60 dB and solving for x, we arrive at:

−60 dB = 20 log10(
Ae(x−p)∗k

A
) (6)

In the end:

Time : −60 dB = ln(
0.001

k
) (7)

Where k is one of the parameters for our curve fitting
function.

From the definition of the exponential function and
the concept of decay time, we further derive that the
time constant τ is the inverse of the decay constant k:

τ = −1

k
(8)

The error estimation for the RT60 time and the decay
time constant τ is derived using the propagation of un-
certainty principles. The propagation of uncertainty al-
lows us to calculate the uncertainty in a function based
on the uncertainties of the variables within it. For the
RT60 time, the function is given by:

RT60 =
ln(0.001)

k
(9)

The error in the RT60 time, σRT60, can be calculated
from the variance of the decay constant k, denoted as
σ2
k, which is the element pcov1,1 in the covariance matrix

returned by the curve_fit function:

σRT60 =

√(
∂RT60

∂k

)2

σ2
k (10)

6

By applying the partial derivative, we get:

∂RT60

∂k
= − ln(0.001)

k2
(11)

Thus, the error in RT60 is:

σRT60 =

∣∣∣∣ ln(0.001)k2

∣∣∣∣√σ2
k (12)

Similarly, the decay time constant τ is given by:

τ =
1

k
(13)

The error in τ , στ , is derived as follows:

στ =

√(
∂τ

∂k

)2

σ2
k (14)

Taking the partial derivative of τ with respect to k, we
find:

∂τ

∂k
= − 1

k2
(15)

Thus, the error in τ is:

στ =
√
σ2
k

(
1

k2

)
(16)

Data Collection Logistics: The Python script func-
tions as an automated data processing tool that performs
several key operations. The data files are named in a
structured manner, beginning with a ”D” to denote ’de-
vice’, followed by a numeral indicating the specific device
from which data was collected. For example, a file named
”D1.TXT” would imply data from device 1. This nam-
ing convention is crucial as it allows the script to identify
and segregate data according to the device.

The script further distinguishes each trial within a de-
vice’s data, assigning it a unique trial identifier, such as
’trial1’, ’trial2’. This ensures the data associated with
each trial can be independently accessed or referenced.
This feature is especially advantageous when organizing
data collections by specific manner, such as first gen-
erating 330 Hz for first device, followed by 440 Hz, etc.

We import our data using the read_csv method from
the Pandas library. This data is then loaded into a
DataFrame, a data structure ideal for handling tabular
data with Python. The final row of this DataFrame, con-
taining the sampling rate, is critical as it determines the
frequency at which the data was recorded.

Our python scripts will generate a 2x2 grid of sub-
plots to visualize different aspects of the data; The first
subplot provides a spectrogram, a crucial visualization
that displays the frequency content of the signal across
time. The second subplot illustrates the results of the
curve fitting process. The script defines two mathemat-
ical models – a linear model for the initial part of the
signal and an exponential decay model for the tail end.

The curve_fit function from the scipy.optimize mod-
ule is employed to find the optimal fit parameters. The
third subplot is dedicated to displaying the original sig-
nal data. The final subplot likely offers another view of
the curve fitting results in a logarithmic scale. This rep-
resentation is particularly useful for examining the decay
characteristics of the signal.

Now, we need to test our curve-fitting function. First,
we will synthesize our data. Synthetic data was gener-
ated to simulate a typical exponential decay process as
follows:

• The time domain was created using a linearly
spaced vector t with 1000 points ranging from 0
to 10.

• A piecewise function y(t) was defined, which is con-
stant at a value a for t < p and follows an expo-
nential decay a · ek(t−p) for t ≥ p, where a, k, and
p are known parameters.

• Gaussian noise was added to simulate measurement
errors, resulting in noisy data ynoisy.

The parameters used were:

a = 10,

k = −0.5,

p = 2,

Noise Level = 0.5.

The curve fitting tool applies a non-linear least squares
method to fit the noisy data to the model function. The
model function is defined in two parts:

• A line function for t < p returning a constant value
a,

• An exponential function for t ≥ p defined by a ·
ek(t−p).

The fitting process optimizes the parameters to minimize
the difference between the model and the noisy data. The
theoretical RT60 is calculated by:

RT60theoretical =
ln(0.001)

k
= 13.82s (17)

Where value of k is 0.5 The theoretical decay time con-
stant Tau is given by:

τtheoretical = −1

k
= 0.02s (18)

The tool’s output parameters and the generated plot are
displayed in Figure 12. The calculated RT60 and decay
time (τ) are annotated on the plot. This plot shows that
the theory is aligned with the curve-fitting parameters.

7

FIG. 12. Curve fitting to synthetic exponential data. The
plot shows the generated noisy data, the fitted curve, and the
annotations for RT60 and decay time (τ) values.

A. Testing with known decay time

In order to validate our method, we first tested measur-
ing the decay time of an audio signal which we manually
damped exponentially. The tone generating board was
set to play a tone and then decrease it’s intensity expo-
nentially with a decay time, τ = 1s The test was carried
out in an acoustically quite room in order to minimize
noise from any possible reverberation. An example of
the data taken from this test can be seen in FIG. 13.

FIG. 13. The ring-down of an exponentially damped tone
with decay time, τ = 1s.

The results from 5 trials found the decay time to be
0.95 ± 0.13s, with errors determined by the exponential
fitting. It is worth noting that this method could be im-
proved by increasing the length of data taken as only
a small portion of the exponential decay is captured in
our data. Despite this the fit appears to be reasonable
and the extracted decay time is within experimental er-
ror of the expected value. However, this error is larger
than 10% which might prove to be to large to discern
any information from actual reverberation data. Several
other factors may be contributing to the uncertainty in
this test. Firstly, calculating the exponential in the de-
cay time is a slow process and results in the generation

of a lower frequency tone and a slower decay than ex-
pected. This could simply be fixed by using a geometric
series or a look up table to decrease the intensity of the
tone.Secondly, the reverberation of the room could in-
crease the measured the decay time. Unfortunately, nei-
ther of these issues would explain a faster than expected
decay time.

B. Preliminary Tests in the Studio

In the studio, the RT60 of a 640 Hz, 440 Hz, 330 Hz,
and 260 Hz sine wave were measured. Each frequency
was played 5 times, with a 5 s interval between each.
However, the room was not ideally set for testing, since
acoustical absorption was in place for a performance that
was happening soon. Figures 14-17 have representative
data from the testing, along with a representative plot
of the noise, which was likely from the rattling of the
ventilation system in the room. The RT60 times for the
640 Hz, 440 Hz, 330 Hz, and 260 Hz were 0.66 s, 0.86 s,
1.43 s, and 1.87 s respectively.

FIG. 14. Spectrogram, raw data, and curve fitting for a 640
Hz sine wave in the studio

FIG. 15. Spectrogram, raw data, and curve fitting for a 440
Hz sine wave in the studio

8

FIG. 16. Spectrogram, raw data, and curve fitting for a 330
Hz sine wave in the studio

FIG. 17. Spectrogram, raw data, and curve fitting for a 260
Hz sine wave in the studio

FIG. 18. Spectrogram, raw data, and curve fitting for noise
generated by the ventilation system in the studio

IV. CONCLUSION

Thus far, we have demonstrated our ability to generate
sound and measure the reverberation time of a dance
hall in the KCPA. The next step in this project will be
to assemble our PCBs and test different sound-proofing
methods to reduce the reverberation time as much as
possible.

It’s likely that the acoustic quality of the room is worse
in certain areas. So we will first need to find what parts
of the room have the worst acoustic response. We are
working to develop a data acquisition method that takes
this into account. One way we could achieve this is by
placing the tone generation board in the middle of the
room and moving the listening board to different parts
of the room to compare the reverberation times. Once
we have narrowed down the areas of the room that give
the worst acoustic response, we can work on dampening
the echo.

There are also several design features we need to take
into consideration. If we simply lay the tone generation
board on the wooden floor, the vibration of the speaker
and board could generate frequencies that get picked up
by the listening board. This could add complications
to our data taking process. A 3D printed part which
holds the PCB, battery pack, and the speaker could be
necessary in future iterations. This part could be fixed
onto a tripod or placed on a soft surface.

ACKNOWLEDGMENTS

We would like to thank Professor George Gollin and
Professor Yuk Tung Liu for their contributions, support,
and guidance throughout the semester. We would also
like to thank Professor Rick Scholwin for giving us access
to and reserving time slots on our behalf for the dance
center, and Ivan Velkovsky for help writing analog input
software.

[1] W. Christine Herman, How a performing arts center in
the middle of illinois became one of america’s cultural
hubs (2019).

[2] University of illinois champaign urbana division of public
saftey.

[3] Rt60 reverberation time (2023).
[4] Reverberation, the invisible architecture (2016).
[5] Overview — adafruit 20w stereo audio amplifier -

max9744 (2023).
[6] 20w 4 ohm full range speaker [xs-gtf1027] (2023).
[7] electret condenser microphone, CUI INC (2008).
[8] Microsd card breakout board+ (2023).
[9] Adafruit spi non-volatile fram breakout - 4 mbit / 512

kbytes - mb85rs4mt (2023).
[10] Low-Cost, Micropower, SC70/SOT23-8, Microphone

Preamplifiers with Complete Shutdown, MAXIM (2012).

