

https://1.bp.blogspot.com/-

XhQVLp4bA34/TzAnlNdwZHI/AAAAAAABCbI/NCj49D2uP8w/s1600/Pierre+Auguste+Renoir+Flowers+-
+Tutt%2527Art%2540+%252817%2529.jpg

Physics 524
Survey of Instrumentation and Laboratory Techniques

2023

George Gollin
University of Illinois at Urbana-Champaign

Unit 1a: Arduino C++ programming environment

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

2

Week 1: Organizations, Distributions, and Installations

Goal for this week .. 2	
Notebooks .. 2	
Distribution of stuff! .. 2	
Installing the Arduino programming IDE; running code .. 3	
In-class exercise: blink code .. 9	
Breadboarding! .. 9	
In-class exercise/milestone 1b: BME680 .. 11	
In-class (due at the first class meeting next week) .. 15	
How to read a schematic .. 15	
This week’s homework assignment (due at the first class meeting next week) 17	

 Goal for this week

• You will assemble a starter circuit on a breadboard and use the Arduino Integrated
Developers Environment (IDE) to program and test it.

Notebooks

Please open up your notebook, and add to your account of the afternoon’s activities as
you work. You’ll want to keep track of your work, and your revelations, so you can return to
them at a later date. We won't be looking at your notes, but if I ask you something like “where
did you go to find that cool piece of demo software?” you should be able to give me an answer
based on your notes.

Distribution of stuff!

I have an alarmingly large amount of stuff available for you. Some of the following I’ve
already packed in the parts/tools kits I’ll distribute in class. (You’ll also use these in Physics
523.)

part

16 x 2 LCD CFAH1602B-NGG-JTV
2 x AAA & 1 x AAA battery holders
3 x 4 keypad (#3845)
5 x AA battery holder, Adafruit 3456
74HC137 3-8 decoder/demultiplexer (TTL)
74HC157N quad 2 input (TTL) multiplexer
Adalogger Feather M0, Adafruit 2796, and microUSB – USB A cable
ADXL326 accelerometer (#1018)
ALLPOWERS 2.5W, 5V photovoltaic (solar) cell

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

3

Arduino Mega 2560 and USB cable
BME 680 T/RH/P/VOC (#3660)
Diodes: 1N5817 Schottky
DS3231 real time clock (#3013)
electret microphone with amplifier (#1063)
RadioFeather M0 with 900 MHz LoRa radio (#3178)
GPS Antenna - External Active Antenna (#960)
INA219 battery voltage/current sensor (#904)
LSM9DS1 accelerometer/magnetometer/gyroscope 0x1E (#3387)
MCP23008 I2C port expander, Adafruit 593
MCP4725 DAC, 12-bit, I2C (#935)
MicroSD card breakout (#254)
MicroSD memory card 8 GB SDHC (#1294)
Mini Metal Speaker w/ Wires - 8 ohm 0.5W (#1890)
MLX90614 IR sensor. Note that there are distinct 3V and 5V versions!
PAM8302 Audio Amplifier (#2130)
red LEDs (#297)
TCA9548A mux I2C multiplexer
TMP36 analog medium temperature thermometers (#165)
TSL2561 or TSL2591 Digital Luminosity/Lux/Light sensor
ultimate GPS breakout board (#746)
USB DIY connectors

Installing the Arduino programming IDE; running code

Go to the Arduino webpage https://www.arduino.cc/en/software. Download and install
the Arduino Desktop IDE (Integrated Development Environment) on your laptop.

The heart of your initial explorations will be an Arduino Mega 2560 microcontroller
board, shown here.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

4

Arduino Mega 2560

It’s a remarkable little gizmo, featuring an Atmel Atmega2560 microcontroller (built by

Microchip Technology, Inc.) running at 16MHz. The Atmega2560 has 256kB of flash memory
in which your program will reside, along with 8kB of SRAM (static random access memory) in
which will live the variables your program modifies as it executes. There are 16 analog inputs
that feed an internal multiplexer whose output drives a 10-bit successive approximation analog to
digital converter (ADC). See https://store.arduino.cc/arduino-mega-2560-rev3 for more details.

Some of the projects might involve a different processor: I have been developing systems
using several Adafruit devices, two of which employ Microchip ATSAMD21G18
microcontrollers. The SAMD21 runs at 48 MHz, features a 12-bit ADC, and has 32 kB of
SRAM, four times more than the Atmega2560. It also has a 10-bit digital to analog converter
(DAC), which the 2560 does not.

The Adalogger M0 includes a built-in microSD memory holder, while the RadioFeather
M0 with RFM95 LoRa radio has a built-in 915 MHz long range radio transceiver. Both are very
cool.

The Arduino IDE is quite a bit simpler than Anaconda’s iPython IDE. Most of what you
will see on your screen is an editor window in which you will create/modify C++ programs that
you will compile and upload to the Arduino. See the screen shot, below. You’ll write and
compile programs using the IDE, then upload them to the Arduino through a USB cable.

There isn’t a debugger, so you’ll be forced to print things to a “serial monitor” screen to
keep track of what’s going on (and going wrong) in the code executed by the Arduino.

Something to keep in mind: the Arduino runs code that is very much like C++, with some

minor differences. But the structure of a program is constrained: there are always two specific
functions that must be included in a program. The first is called “setup”; it takes no arguments
and does not return a value. It is the first routine in a program that executes. The next is called
“loop.” It too takes no arguments and does not return a value. Upon completion of setup, the

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

5

Arduino goes straight into the loop function. It executes loop over and over, jumping back into it
each time the function completes.

Do this: plug the Arduino into a USB port on your laptop, then fire up the IDE. Open the
Blink example, compile and upload it, and see if your processor will talk to you. You’ll need to
make sure the IDE knows what kind of processor you are using: a Mega 2560. (Select this from
the pull-down menu which, in my screen shot, below, initially says “Adafruit Feather M0
(SAMD21).”

Here are some screen shots:

Opening the “blink” example.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

6

Identifying the processor to be used.

You’ll need to tell the IDE which port to use:

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

7

Specifying the USB port to use.

What the program does is pretty obvious. Good coding references are on the Arduino
site: see https://www.arduino.cc/reference/en/ and https://www.arduino.cc/en/reference/libraries.

You can compile the program upload it to your Arduino by clicking the right-arrow
button near the top of the window:

Note the presence of the setup and loop functions.
Some more technical commentary: many of the Arduino’s “pins” are configurable: they

can be defined to be digital inputs, or outputs, or analog inputs. The pinMode instruction defines
the pin driving the red LED to be a (digital) output.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

8

Here’s what you can do to view program output in a “serial monitor” window. First add
some code to write to it:

Then set the baud rate:

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

9

In-class exercise: blink code

Modify the blink program so that it blinks the initials (of your English/American name)
in Morse code.

Breadboarding!

Let’s prep our breadboards. Please fasten an Arduino to your breadboard. I recommend
duct tape (the baby sitter’s friend!); position the device to that it doesn’t cover any of the
breadboard’s plastic structures that are used to hold components.

Here’s how the holes are interconnected, underneath the plastic surface. The five holes in
a column are connected, as shown in a few spots in the picture below. The 25 holes in a
horizontal row are also connected.

In the photo after the close up I show a breadboard with an Arduino and connections
between the Arduino’s 5V and grounds to the breadboard. The doubled connection of the
Arduino grounds is not electrically necessary, but it does provide redundancy in case one of the
ground wires falls out.

Be sensible in your choices of wire colors: always use red for 5V and black for ground.
You’ll want to strip about 5 mm of insulation from each end of a wire when establishing your
connections.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

10

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

11

In-class exercise/milestone 1b: BME680

Most of our breakout boards were built by Adafruit Industries, a wonderful provider of
small electronic packages intended largely for the hobbyist market. Go to the Adafruit site
https://www.adafruit.com/ and find the BME680 page that mentions some of the supporting
infrastructure available for you.

Install the BME680 onto your breadboard. (See https://www.adafruit.com/product/3660
and links therein.) You should power it using the Arduino’s +5V and GND lines. Using sensible
colors (red for +5V, black for ground, other colors for signal lines), connect GND to one of the
Arduino’s GND lines and VIN to one of the Arduino’s 5V lines. Also connect the leads of a
0.1µF capacitor to the BME680’s power and ground inputs.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

12

We’ll let the device and the Arduino communicate using an I2C (“I Two C”: Inter

Integrated Circuit) interface; set this up by connecting the BME680’s SCK (serial clock) pin to
the Arduino’s SCL output (pin 21). Also connect the BME680’s SDI (serial data) to the
Arduino’s SDA input (pin 20). You should leave unconnected the BME680’s 3Vo, SDO, and CS
pins.

Here's a schematic for the circuit that also includes a liquid crystal display. We’ll discuss
briefly how to read the schematic. (Don’t bother with the LCD for the moment, though you are
free to wire it up, if you’d like.)

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

13

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

14

You’ll need to install one of Adafruit’s libraries to drive the BME680. See
https://learn.adafruit.com/adafruit-bme680-humidity-temperature-barometic-pressure-voc-
gas/arduino-wiring-test and scroll down to the section titled “Install Adafruit_BME680 library.”
Follow the directions to install the library and upload to the Arduino the demonstration software.
Then open, compile, and run the example program BME680test.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

15

You should find that the pressure transducer is so sensitive that it can tell that you’ve lifted the
board up from your worktable by a couple of feet just from the change in atmospheric pressure.

In-class (due at the first class meeting next week)

On your breadboard, install the following devices (in addition to the BME680 and
Arduino): LCD (including 10kW trimpot), keypad, and microSD breakout. See the schematic,
below.

For each device find a demo program (perhaps on the Adafruit site, or from a library that
you might install, or from the course’s “Code & design resources repository”) and confirm that it
functions properly. You’ll need to fool around with the 10k trimpot to adjust the LCD contrast
properly.

How to read a schematic

A schematic holds a topological representation of an electronic circuit. The two most
important things on it are symbols for the various components—resistors, capacitors, integrated
circuits and so forth—and (named) nets, which define the electrical connections between
components. For example, the BME680 symbol on the schematic shows seven pins, with pins 1,
3, 4, and 6 connected to the nets named 5V, GND, I2C_SCL, and I2C_SDA, respectively. (Pins
2, 5, and 7 are not connected to anything.) Anything tied to the 5V net is electrically connected
to everything else on the 5V net.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

16

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

17

When lines representing nets cross each other the point of crossing does not represent a
connection between the nets! For example, the LCD_RS and LCD_E nets are not connected to
each other here:

We indicate a point at which two lines (which are on the same net) are electrically connected
with a dot as follows:

.

This week’s homework assignment (due at the first class meeting next week)

Finish all of the in-class exercises in this unit, and be prepared to show your results to the
course staff during class.

Unit 1a

Physics 524, University of Illinois ©George Gollin, 2023

18

