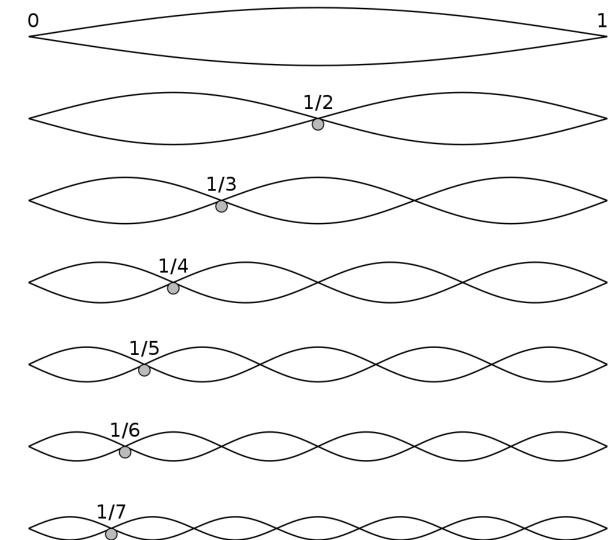
Sound and Acoustics I

Ivan Velkovsky

What is sound? Acoustic waves

 A sound or acoustic wave is a disturbance that propagates through a medium

Follows the wave equation:
$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} \right)$$


- Usually a longitudinal (pressure) wave
 - The medium is compressed and rarefied
 - In solids can also be a transverse/shear/strain wave
- Speed of sound depends on material properties

Standing and traveling waves

- Waves emitted from a point source propagate through space (traveling waves)
- Two waves at the same point in space will interfere
 - If they are in-phase, the amplitude increases (constructive interference)
 - If they are out-of-phase, the amplitude decreases (destructive interference)
- A wave interfering with itself can form a fixed pattern in space known as a standing wave

The Harmonic Series

- A resonant object vibrating produces a sound wave
- The lowest frequency of that wave is called the *fundamental*
- The object (e.g. a string) can also vibrate at integer fractions of its length (1/2, 1/3, 1/4, etc.) This produces successively higher overtones

(Source : Wikimedia, public domain)

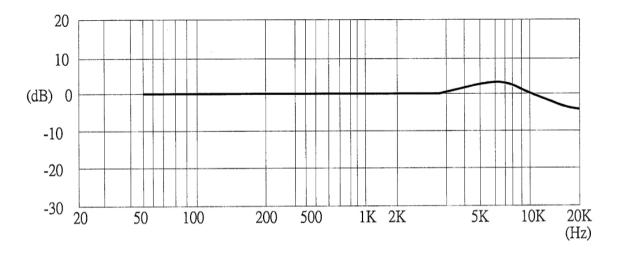
Human Perception of sound

- Human hearing range is 20-20,000 Hz
 - Young people can often hear higher, up to 22,000 Hz. High frequency hearing is lost with age
 - Highest sensitivity in 250 Hz 5k Hz range
- Human speech has a fundamental frequency in the range of 85-255 Hz

How do we measure it? Microphones

- A microphone is a device that transforms an acoustic signal into an electrical signal
- Generally involves a moving element connected to an electrical circuit
- Many different types of microphones:
 - Moving capacitor (Condenser)
 - Moving coil around permanent magnet (Dynamic)
 - Moving metal foil in magnetic field (Ribbon)
 - Piezoelectric (Crystal)

Our microphone: Electret microphone


- Condenser-type microphone with a ferroelectric material as the capacitor
 - Static polarization means that it doesn't require external bias voltage.
 - Moving diaphragm changes the capacitance -> electrical signal
- Usually inexpensive
- Usually omnidirectional with a wide frequency range

Datasheet

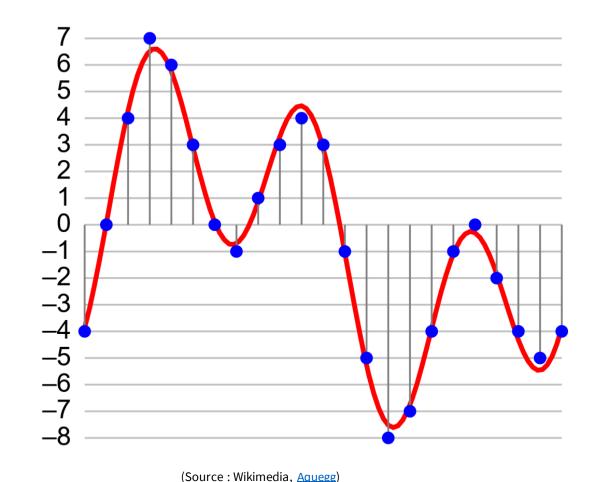
SPECIFICATIONS

directivity	omnidirectional	
sensitivity (S)	-44 ±2 dB	f = 1KHz, 1Pa 0dB = 1V/Pa
sensitivity reduction (Δ S-Vs)	-3 dB	f = 1KHz, 1Pa Vs = 3.0 ~ 2.0 V dc
operating voltage	3 V dc (standard), 10 V dc (max.)	
output impedance (Zout)	2.2 ΚΩ	f = 1KHz, 1Pa
operating frequency (f)	20 ~ 20,000 Hz	
current consumption (IDSS)	0.5 mA max.	$Vs = 3.0 V dc RL = 2.2K\Omega$
signal to noise ratio (S/N)	60 dBA	f = 1KHz, 1Pa A-weighted
	· · · · · ·	

FREQUENCY RESPONSE CURVE

Sound and Acoustics II

Ivan Velkovsky


Sampling

- Process of converting a continuous-time (analog) signal into a discrete-time (digital) signal
- Key factors:
 - Sampling rate How often you measure the signal
 - Sampling depth How finely do you measure the amplitude

Nyquist-Shannon Theorem

- If we have a signal of bandwidth f_0 , in order to reconstruct it perfectly we need to sample at $f_s \ge 2f_0$
- Undersampling (sampling at lower than the *Nyquist rate*) causes a phenomenon known as *aliasing*
 - Aliasing causes a higher-frequency signal to appear lower-frequency
 - Can cause noise, distortion, etc. and leads to imperfect reconstruction

Signal reconstruction

- Digital signal = amplitude at each sample time
- How to reconstruct the analog signal?
- Most common method: Pulsecode modulation
 - At each sample time, output a voltage equal to the sample amplitude
 - Use a low-pass filter to get rid of aliasing

Frequency power spectrum / Spectral Density

- Instead of looking at a signal in the time domain, we can look in the frequency domain
 - The transformation for a discrete-time signal is called a Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT)
- Peaks in the power spectrum correspond to a high amplitude at a given frequency
 - This can be associated with a resonance or other single-frequency emitter
- Different noise types appear differently in the power spectrum
 - White noise has constant power at all frequencies
 - 1/f noise has power inversely proportional to frequency

Spectrograms

- A spectrogram is a way of visualizing data in *both* frequency and time
- Max frequency determined by sampling rate
- Min frequency determined by integration time
- Often gives you information that you can't get from one alone

(Source : Wikimedia, Omegatron)