Abaqus/CAE tutorial 3D Elasticity

2D Plane Stress vs 3D model

A cantilever beam is made of steel with a modulus of elasticity $\mathrm{E}=200 \mathrm{GPa}$ and a Poisson's ratio $v=0.3$ and is subjected to a distributed normal traction on the top surface with magnitude 10 MPa . The beam has dimensions 600 mm (length) and 200 mm (height)

Create $\mathbf{3}$ different models for this problem.

- 3D with thickness 20 mm
- 3D with thickness 100 mm
- 2D plane stress model

Make conclusions about your results.

Part Module

Create part: Cantilever-3D-t20: 3D Part, deformable, Solid, Extrusion. Create a rectangle with starting corner $(0,0)$ and opposite corner $(600,200)$. Click done and enter depth equal to 20

Property Module

- Create material (Steel), select Mechanical tab, Elasticity Elastic. Select the material Type as Isotropic and define Young's modulus $=200 \mathrm{e} 3(\mathrm{MPa})$ and Poisson's ratio $=0.3$ Click Create Section (Solid, Homogeneous) and select material (Steel). Click OK.
Click on Assign Section. Assign the section your created in the previous step to your rectangular part.

Assembly Module

- Click on Create Instance
- Create Instance dialog box appears, select Cantilever-3D-t20
- Select Dependent for the instance type
- Click OK

Step Module

- Click on the Create Step icon and the Create Step dialog box appears.
- Name the step (e.g. Step-1), set the Procedure type to General and select Static, General
- Click Continue
- The Edit Step dialog box appear. Click OK

Load Module

- Click on Create Boundary Condition icon and the Create Load dialog box appears.
- Select Displacement/Rotation and click Continue.
- Select the edge that is clamped. The Edit Boundary Condition dialog box appears.
- \quad Select Uniform distribution and select all degrees of freedom. Click OK

Load Module

- Click on Create Load icon and the Create Load dialog box appears.
- Select Surface traction and click Continue. Select the surface where load is applied and click Done. The Edit Load dialog box appears. Select Uniform distribution and general traction
- Click on the arrow button next to "Vector: Required" to enter the direction of the normal vector (perpendicular to the surface)
- Write the first point of the normal vector: 0,0,0. Press Enter.
- Write the second point of the normal vector: $0,1,0$. Press Enter..

Mesh Module

- Go To Module Mesh
- From the top toolbar, go to "Mesh" and select "Controls"
- Select Element Shape: Hex
- From the top toolbar, go to "Mesh" and select "Element Type". Select each part in the viewport and click Done in the prompt area. Element Type dialog box appears.
- Select Standard for Element Library, Linear for Geometric Order and 3D Stress for Family
- Select Hex C3D8; uncheck Hybrid and Reduced integration
- Read more on hybrid elements here
- Read more on reduced integration here

Mesh Module

- In the toolbox area click on the Seed Part
- Give approximate global size $=10$
- In the toolbox area click on the Mesh Part
- Click Yes in the prompt area

Job and Visualization Module

- Click on Job Manager icon and the Job Manager dialog box appears.
- Click Create and the Create Job dialog box appears.
- Give a name to the job (Cantilever-3D-t20) and click Continue
- Click OK on the Edit Job dialog box
- Click Submit on the Job Manager
- Once the job is completed (check status column), click Results. This will take you to the Visualization Module

Displacement curves

- From the toolbar menu, click Tools-Path-Create and select Node List
- The Edit Node List Path will appear. Click Add Before...
- \quad Select nodes to be inserted in the path. For example, you may choose the start as $(0,100)$ and the end as $(100,100)$ as indicated below (z coordinate is 20)
- Click Done and OK

- From the toolbar menu, click Tools-XY Data-Create and Select Path
- Select the path your created (Path-1) and mark "Path points" and "Include interserctions)
- $\quad X$ values $=x$ distance
- For Y values, click on the field output button and select displacement (U), component U2 (y-direction). You may want to try different fields too.
- Click OK and Plot

Save As... Plot	Cancel

\# Field Output

Step/Frame

Step: 1, Step-1
Frame: 1 of

Primary Variable	Deformed Variable	Symbol Variable	Status Variable	Stream Variable

Output Variable
\square List only variables with results:

Name	Description [^ indicates complex]
AC YIELD	Active yield flag at integration points
CF	Point loads at nodes
E	Strain components at integration points
PE	Plastic strain components at integration points
PEEQ	Equivalent plastic strain at integration points
PEMAG	Magnitude of plastic strain at integration points
RF	Reaction force at nodes
S	Stress components at integration points
U	

Section Points...
OK Apply \quad Cancel

- From the toolbar menu, click Report-XY. The Report XY Data dialog box appears.
- Go to the Setup tab, give a name to the file "Cantilever-3Dt20.rpt" and remove the selection from the option "Append to file". Click OK.
- Open the file to see your displacement results.

Comparison to other models

Now create two more models of the same problem; we'll compare the solution results

Model 2: 3D model with thickness 100

- Either copy the first model and modify the extrusion thickness, or repeat the previous steps using an extrusion thickness of 100
- You do not need to modify the traction load magnitude for the boundary condition

Model 3: 2D planestress model

- Recreate the model using the same size mesh but with 4 node linear quadrilaterals. Use Plane stress linear 4 node quadrilateral elements (uncheck hybrid and reduced integration boxes)

S, Mises
(Avg: 75\%)

$+3.841 \mathrm{e}+02$
$+3.81 e+02$
$+3.521 e+02$
$+3.201 \mathrm{e}+02$
$+2.881 \mathrm{e}+02$
$+2.561 \mathrm{e}+02$
$+1.921 e+0$
$+1.921 \mathrm{e}+02$
$+1.601 \mathrm{e}+02$
$+1.281 \mathrm{e}+02$
$+9.609 e+01$
$+6.409 e+01$
$+3.209 e+01$
$+8.226 e-02$

- Displacement curves for the selected path are basically the same for the three different models.
- Plane stress is a good assumption for this cantilever beam model
- Results will start to deviate when the thickness becomes larger (comparable with beam length)

- The use of 2D models reduces the computational power

