Abaqus tutorial Modal Analysis in 3D

Problem

• We will be doing a modal analysis to find the first 7 natural frequencies of a 3D hollow cylinder as shown below, which has one of the ends fixed.

Part Module

- Click Create Part with the settings as shown in the figure.
- Create a sketch as shown below. Enter Depth 10.

Property Module

- Click on Create Material.
- Name it Steel.
- Set General -> Density = 7e3.
- Set Mechanical -> Elasticity -> Elastic, Young's Modulus = 210e9 and Poisson's Ratio = 0.3.

	🜩 Edit Material	×
	Name: Steel	
	Description:	1
	Material Behaviors	
	Density	
	<u>G</u> eneral <u>M</u> echanical <u>T</u> hermal <u>E</u> lectrical/Magnetic <u>O</u> ther	1
	Density	
	Distribution: Uniform	
	Use temperature-dependent data	
	Data	
	Mass Density	
	1 7e3	
🜩 Edit Material	×	
Name: Steel		
Description:	J#	
Material Behaviors		
Density Electic		
<u>G</u> eneral <u>M</u> echanical <u>T</u> herma	al <u>E</u> lectrical/Magnetic <u>O</u> ther	
Elastic		
Type: Isotropic	▼ Suboptions	
Use temperature-dependent o	Jata	
Number of field variables:	0	
Moduli time scale (for viscoelasti	icity): Long-term	
No compression		
No tension		
Data Verret		
Young's Poiss Modulus Rat	on s tio	
1 210e9 0.	3	

Property Module

- Click on Create Section.
 Select options shown on the right and Click OK.
- Next Click Assign Section. Select the section created and Click OK.

Assembly Module

 In Assembly Module, click on Create Instance, select the part, check the Dependent option and click OK.

Step Module

- In Step Module, click on Create Step.
- Name it Modal.
- Select Procedure type : Linear perturbation and select Frequency.
- Click Continue

	Module:	Step 🗠 Model: 🗘 Model-1		
)÷	•••	💠 Create Step 🛛 🗙		
	Create Step	Name: Modal Insert new step after Initial		
	(XY2) ↓ ↓ ↓	Procedure type: Linear perturbation Buckle		
Static, Linear perturbation Steady-state dynamics, Direct Substructure generation				
		Continue Cancel		

Step Module

- In the next window, select Lanczos eigensolver.
- Set the "Value" of "Number of eigenvalues requested" to 7.
- Click OK

🜩 Edit Step	<
Name: Modal	
Type: Frequency	
Basic Other	
Description	
	-
Nigeom: Off	
Eigensolver: O Lanczos O Subspace O AMS	
Number of eigenvalues requested: O All in frequency range	
• Value: 7	
Frequency shift (cycles/time)**2:	
Acoustic-structural coupling where applicable:	
Olnclude ○ Exclude ○ Project	
Minimum frequency of interest (cycles/time):	
Maximum frequency of interest (cycles/time):	
Block size: O Default 🔿 Value:	
Maximum number of block Lanczos steps: 🗿 Default 🔘 Value:	
Use SIM-based linear dynamics procedures	
Project damping operators	
Include residual modes	
OK Cancel	

Load Module

- In load module, select "Boundary Condition Manager".
- Select Step to Initial.
- Select Displacement/Rotation. Click Continue.
- Select a flat circular face. Click Done.
- Check all quantities in the next screen and Click OK.

Mesh Module

- Click on Part instead of Assembly as shown on the right.
- On the toolbar Mesh -> Control and select Hex with Sweep and click OK.
- In Mesh -> Element Type, Select Hex, 3D Stress, Linear and uncheck reduced integration. Element should be C3D8.

Mesh Module

- Click on Seed Edges and select the four circles on the flat faces (you should hold Shift key to select multiple edges and Ctrl + Alt + Click to rotate the body) and click Done.
- Set By number and enter Number of elements = 20.
- Click on Mesh Part and select Yes.
- You should get a mesh as shown.

Job Module

- Click on Create Job. Name it as Modal. Select the model and click Continue.
- In the next screen, click OK.
- Click on Job Manager, select Modal and click on Submit.
- The program will run for a few seconds.

	Jol Mana	ager Job Manager				×
ΗШ		Name	Model	Туре	Status	Write Input
T		Elastodynamics	Model-1	Full Analysis	None	Data Check
						Submit
						Continue
						Monitor
						Results
						Kill
		Create	Edit Copy	Rename	Delete	Dismiss

Visualization Module

- After the job is completed, right click on the Modal job and select results.
- This will go to the results tab.

Visualization Module

- To see the current mode, Click on "Animate Harmonic".
- To switch between the modes, stop the current animation by clicking on the "Animate Harmonic" button again.
- Select the Next or Previous buttons on the top right of the screen.
- In "Animation Options", chose Scale Factor/ Harmonic tab and check Full Cycle.
- The animation speed can be set in Player tab of "Animation Options".

Visualization Module

- You can view the frequency of each mode as well.
- Select Result -> Step/Frame.
- A window which has the Natural frequencies will pop up.

💠 Abaq	us/CAE 202	22 [Viewpo	rt: 1]				
😑 <u>F</u> ile	<u>M</u> odel	Vie <u>w</u> port	<u>V</u> iew	<u>R</u> esult	<u>P</u> lot	<u>A</u> nimate	Report
! 🗋 🖆	j 🖪 🚔		110 to P	<u>Step</u> <u>A</u> ctiv Secti	/Frame ve Step ion <u>P</u> oi	e s/Frames nts	/lagnit
Model	Results			<u>F</u> ield Histe	l Outpu ory Out	ıt tput	ualizat
Session	Data		✓ \$ 6	 Opti	ons		
1	utput Data	bases (1)			>	LC S	U,
-	Step/Frame					×	
	ep Name Idal	D	escription				
Fran	ne						
[Ind	lex Descript Increment	ion nt 0: Base State	2				

1: Value = 13641. Freq = 18.588 (cycles/time)

2: Value = 13641. Freq = 18.588 (cycles/time)

3: Value = 2.77761E+05 Freg = 83.879 (cvcles/time)

	ОК	Apply	Field Out	put	Cancel
7	Mode	7: Value = 1.450	14E+06 Freq =	191.66 (cycles/time)
6	Mode	6: Value = 7.442	76E+05 Freq =	137.31 (cycles/time)
5	Mode	5: Value = 3.397	89E+05 Freq =	92.774 (cycles/time)
4	Mode	4: Value = 3.397	89E+05 Freq =	92.774 (cycles/time)

Mode

Mode

Mode

2

3

Unconstrained Model

Make a copy of the completed model. In the copy, remove the cantilever displacement boundary condition. Create a new job associated with the new model and re-run the analysis.

When reviewing results, think about the following:

- 1. How do the modal frequencies differ for the unconstrained case?
- 2. Is there a modal frequency and deformation mode in the unconstrained case that closely matches any frequencies associated with the constrained model?