P524: Survey of Instrumentation and Laboratory Techniques

Instructor: Chen-Yu Liu

Guest lecturer: Gregory Hallewell, Brian Mercer, Tim Barklow

TA: Chad Lantz

Grader: Garrett Williams

Course designer: George Collins, who will teach P523 (projects)

Human Anatomy

Instrumentation, or building your project (could be a robot)

We will need the following:

1. A brain:

Microprocessors (with CPU: Central Processing Unit)

- Personal computer (running windows, mac, or linux OS)
- Raspberry Pi (small computer, running linux OS)
- Arduino board (microprocessor)
- Other boards similar to Arduino boards

https://www.sparkfun.com/standard _arduino_comparison_guide

	РС	Raspberry Pi	Arduino Uno	Arduino Mega	Feather M0	Feather M4
Processor make	Intel, AMD, Apple	ARM Cortex-A72	Atmega328P	ATmega2560	ATSAMD21G18	ATSAMD51
cores	1 to 64 (standard)	4	1	1	1	1
Speed	Up to 3.8 GHz	Up to 1.8 GHz	16 MHz	16 MHz	48 MHz	120 MHz

Arduino Boards

Gain float->60dB G=Gnd -> 50dB G=Vdd -> 40dB Output 2Vpp max DC Offset: 1.25V PB C SP DC Offset: 0.000

MAX9814

- Microphone with an built-in amplifier
- Measures sound waves

MAX4466

- Microphone with a built-in amplifier
- Measures sound waves

TSL2591

- Light sensor (LUX)
- Infrared & full-spectrum

VL6180: Time-of-flight distance sensor

LSM9DS1 (9-DOF)

- Accelerometer
- Gyro
- Magnetometer

Stepper Motors and Control Board

The sensor signals will need to be sent to the processor via communication buses

Within the boards, we have communication bus & protocol

- Serial communication (UART, Universal Asynchronous Receiver/Transmitter)
- I2C (Inter-integrated Circuit)
- SPI (Serial Peripheral Interface)

There are also wireless communication available:

TECHNOLOGY	APPLICATION	SUCCESS METRICS	DATA RATE	RANGE
Wi-Fi	LAN, Internet	Speed, Flexibility	.1-7 Gbps	100m
Li-Fi	LAN, Internet	Security, Speed, Cost	1-3.5 Gbps	10m
Bluetooth	PAN, Mobile Credentials	Cost, Convenience	48 Mbps	<300m
ZigBee	Sensor Networks	Reliability, Power, Scalability, Cost	.250 Mbps	70-300m

Finally, you need to "program" how the brain process the signals

• You will write programs and download to the microprocessor:

- Arduino: C++ (in Arduino IDE), or python (circuit python)
- Python: to process the recorded data (on your PC) to make sense of the data

PHYS523: Projects

Project Idea: Noise cancellation of noisy pumps

In 1989, Bose Corporation introduced its "Series I Aviation Headset" which became the first commercially available ANR headset. It included a noise-cancelling function and was powered either by NiCad batteries (with a claimed battery life of 8 hours) or by power from the aircraft.

Can we create a device to cancel the noise by adding speakers in the vicinity of the noise generator (e.g., a noisy pump or air-handler)? Project Idea: An Arduino-based radiation detector to identify radio-isotopes, including radon gas

Gamma ray spectroscopy with Arduino UNO

- <u>https://pubs.aip.org/aapt/ajp/a</u> <u>rticle/86/5/384/1041617/Gam</u> <u>ma-ray-spectroscopy-with</u> Arduino-UNO
- Goal: add the capability to detect radon gas

Project Idea: A music tuner for beginning violin players

