P524: Survey of Instrumentation and Laboratory Techniques Week 11

11/5/2024

Week 11: sensors-6

Atmospheric Sensors:

BME680: this precision sensor from Bosch can measure

- humidity with ±3% accuracy,
- barometric pressure with ±1 hPa absolute accuracy, and
- temperature with ±1.0°C accuracy.
- Contains a small MOX sensor. The heated metal oxide changes resistance based on the volatile organic compounds (VOC) in the air, so it can be used to detect gasses & alcohols such as Ethanol, Alcohol and Carbon Monoxide and perform air quality measurements.
- Note it will give you one resistance value, with overall VOC content, it cannot differentiate gasses or alcohols.

BME680 – the atmospheric Swiss army knife

Pressure and temperature: Porous Silicon Membrane

- Sensor is a porous membrane in an internal cavity
- Porous silicon is *piezoresistive* resistivity changes with strain
- 2 different sources of strain: temperature variation (differences in thermal expansion of different materials) and pressure change.
- Device converts change in resistivity to change in temperature and pressure

Relative humidity – you guessed it, porous silicon!

- Same membrane technology can be used to measure relative humidity
- Water adsorption onto a specially-designed surface changes the capacitance/resistivity of the device
- Measuring that gives the % relative humidity.

Something slightly different – VOCs & Metal-Oxide gas sensors

- VOC volatile organic compound, harmful for air quality (ex: solvent fumes)
- Metal oxide adsorbs oxygen molecules to its surface when heated, reducing electron mobility -> increasing resistivity
- Reducing/oxidizing gases change surface oxygen level
- Change in resistivity thus gives gas concentration.

Datasheet info:

 <u>https://www.bosch-</u> <u>sensortec.com/media/boschsensortec/downloads/datasheets/bst-</u> <u>bme680-ds001.pdf</u>

1.5 Temperature sensor specification

Table 8: Temperature parameter specification

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating temperature range	TA	operational	-40	25	85	°C
Supply current	Idd,t	1 Hz forced mode, temperature measurement only		1.0		μA
Absolute accuracy temperature ¹⁵	Ат,25	25 °C		±0.5		°C
	A _{T,full}	0–65 °C		±1.0		°C
Output resolution	R⊤	API output resolution		0.01		°C
RMS noise	NT	Lowest oversampling		0.005		°C

1.4 Pressure sensor specification

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating temperature range	TA	operational	-40	25	85	°C
		full accuracy	0		65	
Operating pressure range	Р	full accuracy	300		1100	hPa
Supply current	I _{DD,LP}	1 Hz forced mode, pressure and temperature, lowest power		3.1	4.2	μA
Temperature coefficient	700	25-40 °C, 900 hPa		±1.3		Pa/K
of offset ¹³	TCOP			±10.9		cm/K
Absolute accuracy pressure	A _{p, full}	300–1100 hPa 0–65°C		±0.6		hPa
Relative accuracy pressure	Arel	700–900hPa, 25–40 °C, at constant humidity		±0.12		hPa
	A _{rel}	900–1100hPa 25–40 °C, at constant humidity		±0.12		hPa
Resolution of pressure output data	R _P	Highest oversampling		0.18		Pa
Noise in pressure	Ne,fullew	Full bandwidth, highest oversampling		1.4		Pa
				11		cm
		Reduced bandwidth, highest oversampling	_	0.2	_	Pa
				1.7		cm
Solder drift		Minimum solder height 50µm	-0.5	1.2	+2.0	hPa
Long-term stability ¹⁴	P_{stab}	per year		±1.0		hPa
Possible sampling rate	fsample_P	Lowest oversampling, see chapter 3.3.2	157	182		Hz

Table 7: Pressure parameter specification

1.3 Humidity sensor specification

Table 6: Humidity parameter specification

Parameter	Symbol	Condition	Min	Тур	Max	Unit
On and the Property 10			-40	25	85	°C
Operating Range**			0		100	% r.H.
F . U			0		65	°C
Full accuracy range			10		90	% r.H.
Supply Current	І _{рр.н}	1 Hz forced mode, temperature and humidity measurement		2.1	2.8	μA
Absolute Accuracy	A _H	20–80 % r.H., 25 °C, including hysteresis		±3		% r.H.
Hysteresis ¹¹	H _H	10→90→10 % r.H., 25°C		±1.5		% r.H.
Nonlinearity	NLн	10→90 % r.H., 25°C		1.7		% r.H.
Response time to complete 63% of step ¹²	τ0-63%	N₂ (dry) → 90 % r.H., 25°C		8		S
Resolution	R _H			0.008		% r.H.
Noise in humidity (RMS)	N _H	Highest oversampling		0.01		% r.H.
Long-term stability	ΔH_{stab}	10–90 % r.H., 25°C		0.5		% r.H./ year

10

Table 2: Gas sensor parameter specification

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operational range ¹			-40		85	°C
			10		95	% r.H.
Supply Current during heater operation	IDD	Heater target temperature 320 °C, constant operation (V _{DD} ≤ 1.8 V, 25°C)	9	12	13	mA
Peak Supply Current	I _{Peak}	Occurs within first ms of switching on the hotplate	15	17	18	mA
Average Supply Current	Idd,iaq	Ultra-low power mode		0.09		mA
		Low power mode		0.9		mA
(V _{DD} ≤ 1.8 V, 25°C)		Continuous mode		12		mA
Response time ² (brand-new sensors)	τ33-63%	Ultra-low power mode		92		s
	T33-63%	Low power mode		1.4		s
	τ33-63%	Continuous mode		0.75		s
Resolution of gas sensor resistance measurement			0.05	0.08	0.11	%
Noise in gas sensor resistance (RMS)	N _R			1.5		%

Exercise: VOC sensor

Connect your BME680 to either MEGA or Adalogger.

- Using the example code, test that the BME680 is working and recording all four measurements
- Make sure you can turn the VOC/gas sensor on and off in the code.
- Make sure that you can modify the oversampling for the other sensors.
- 1. Ethanol:
 - Get some ethanol and a fan. Place your two sensors on the table and measure the distance between them. With proper PPE, take a small amount of ethanol and pipette it onto a tray to evaporate. Measure the output of the VOC sensor under different airflow conditions as a function of distance from the sensor and amount of ethanol evaporated.

2. Humidity & VOC in human breath:

- The exhaled air from our lungs is often warmer, more humid, and has a higher VOC concentration than normal room air. With your partner, investigate the effects of human breath on the humidity & VOC measurements from the BME680
- Suggested things to measure:
 - i. Measure the change in humidity & VOCs as a function of distance from your partner.
 - ii. Measure the effects of different kinds of breathing (talking, blowing, regular breathing, etc.)
 - iii. Come up with a way to estimate the number of people in a room based on your results.