

Physics 524
Survey of Instrumentation and Laboratory Techniques

2024

University of Illinois at Urbana-Champaign

Unit 2: I2C, SPI, and the oscilloscope

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

2

Goal for this unit .. 2	
First things first .. 2	
Oscilloscope! ... 4	
I2C ... 7	
SPI ... 10	
This week’s homework assignment (due at the first class meeting next week) 10	

1. SPI vs I2C speeds .. 10	

 Goal for this unit

• Practice using an oscilloscope;
• Learn about the I2C and SPI inter-device communication protocols.

With SparkFun’s permission, this week we’ll use a lot of the excellent tutorial material
they have posted to the web. Some of the tutorials are here:

• Serial Communication: https://learn.sparkfun.com/tutorials/serial-communication
• I2C: https://learn.sparkfun.com/tutorials/i2c
• Serial Peripheral Interface (SPI): https://learn.sparkfun.com/tutorials/serial-peripheral-

interface-spi

Working in pairs, you’ll also be using a (digital) oscilloscope to look at the I2C and SPI

data and clock lines on a pair of breadboarded BME680s.

First things first

If you don’t already have a BME680 on your bread board, wire up the circuit shown here:
https://courses.physics.illinois.edu/phys524/fa2024/phys524_units/2/p524_week4.pdf. Since
you’ll be working in pairs, you only need to prepare one breadboard. Between the two people in
a pair, you have at least two BME680s, so one of you should loan your BME680 to the
breadboarded circuit.

Add a couple of grounded (black) wires to the breadboard to which you’ll clip the scope
probes’ grounding alligator clips. (Leave one end of the wires hanging or, better yet, anchor them
in unused holes.) Do something similar to the data and control lines for the two BME680s.

One last thing: fly wires from a couple of digital pins to the breadboard. I’m using
Arduino pins 10 and 8.

Here are a couple of pictures of my circuit:

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

3

:

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

4

I’ve written a simple program that will run on a MEGA 2560 to read one of the

BME680s; the code is linked here:
https://courses.physics.illinois.edu/phys524/fa2024/phys524_units/2/bme680test.ino . Note that
you’ll need to put it inside a folder named “bme680test” to run it. Also note the presence of a
compiler directive in the code in which DO_I2C can be set true (to use the I2C BME680) or false
(to use the SPI BME680).

Please run the code to make sure everything is working.

Oscilloscope!

An oscilloscope is nothing more than a fancy voltmeter that represents the voltage seen
by a probe by changing the vertical position of a bright spot on the screen according to how large
the voltage is. When a “trigger condition” is satisfied the device sweeps the bright spot from left
to right, changing the vertical position as the voltage changes.

Please write a very simple program that declares an Arduino pin to be an output, then “bit
bang” a few pulses to it in each pass through loop. For example, you could try this:

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

5

/***
 Code for Physics 524 week 4 exercises studying I2C and SPI communications:
 pulse the d10 line on the arduino.
 ***/

// Arduino digital pin we’ll look at with the oscilloscope
#define the_pin 10

void setup()
{
 // open the line to the serial monitor
 Serial.begin(115200);

 // wait for it to be ready
 while (!Serial);

 // print a few blank lines
 Serial.print("\n\n\n");

 // message to the user:
 Serial.println("oscilloscope test program");

 // now set the Arduino pin to be an output, then set it LOW.
 pinMode(the_pin, OUTPUT);
 digitalWrite(the_pin, LOW);
}

void loop()
{
 // approximately once per second generate a 10 msec-wide positive pulse
 // followed by a 20 msec gap during which the pin stays low, then a 30
 // msec positive pulse. I am going to IGNORE the time to execute the
 // code in loop my duration calculations.

 // let’s not hard-code the numerical values, a style thing.
 int dt1 = 10;
 int dt2 = 20;
 int dt3 = 30;
 int quiet_time = 1000 - dt1 - dt2 - dt3;

 Serial.println("...generate pulses");

 digitalWrite(the_pin, HIGH);
 delay(dt1);

 digitalWrite(the_pin, LOW);
 delay(dt2);

 digitalWrite(the_pin, HIGH);
 delay(dt3);

 digitalWrite(the_pin, LOW);
 delay(quiet_time);
}

Now what? Now it’s time to deal with the oscilloscope! We have on hand twenty UNI-T

UTD2102CEX+ “digital storage oscilloscopes.” Here are two photos of the one I’m working
with:

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

6

In the first, the scope trace is generated automatically at regular intervals even though

nothing interesting is coming down the scope probe cable. In the second, the scope has triggered
its trace in response to detecting a rising edge on channel 1.

Now do this: explore the various scope functions and set the horizontal sweep speed to
5µs per division. Modify your pulse train code to do nothing but change the output on the digital
pin (10 in my case) from HIGH to LOW, or LOW to HIGH each time your program reenters
loop. Using the cursor function on the scope, figure out how long it takes for a single pass
through loop. Here’s a photo of my scope screen.

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

7

I2C

Modify your BME680 code so that it is talking to the I2C-connected device. Attach the
channel 1 scope probe to your Arduino digital pin 10, and the channel 2 probe to BME680’s
SCK clock line. (Of course, make sure the probe’s ground line is connected to your breadboard’s
ground.)

Have your code toggle the pin 10 value (switch it from HIGH to LOW, or else LOW to
HIGH) each time the software makes its next pass through loop. Trigger your scope on a rising
edge in channel 1, with the sweep speed set to 50 µs per division, when channel 2 is looking at
the BME680’s clock input. Here’s what I get, with the first channel showing the pin 10 trigger
and the second showing the I2C clock, generated by the Arduino.

A small subtle point: the BME680 breakout board includes 10k resistors connecting the
I2C data and clock lines to +5V. In general, somewhere on a circuit board’s I2C lines there need
to be “pull-up” resistors since I2C devices are unable to push the clock and data lines up to the
HIGH level. They can only pull the line down towards ground.

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

8

Now move your channel 1 signal to the “EXT TRIG” connector on the scope, and use a

third probe so that the clock signal is on channel 1 and the data (SDI s) line on channel 2. You
should see something like this:

×

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

9

Note that the clock and data lines are initially HIGH, then the data line drops to low. This
serves as the “start” signal to alert devices sharing on the I2C lines that something is about to
happen. After the start signal, the next seven bits of data specify the I2C address of the device the
Arduino wants to contact. A device’s I2C address is hardwired into the device itself; the address
of an unmodified BME680 will always be (hexadecimal) 0x77. Recall that 0x77 is the same as
decimal 7×16 + 7, or 119. In binary it’s 0b01110111.

From SparkFun: here’s what is in the first part of the data flowing on the SDO line. Since
the I2C address only uses the low order seven bits of a byte, we expect to see the first seven bits
after the start signal sent as 1110111.

Let me expand the first part of the scope image for you. You’ll see that the address is just what
we expect. Also note that the R/W and ACK bits are both low since the Arduino will next tell the
BME680 what it wants it to do, and the BME680 has acknowledged that it recognized its
address.

Play around with the “cursor” function to measure the clock speed. I find, with my setup,

that the MEGA 2560 generates a clock pulse every 10 µs, corresponding to a 100 kHz clocking
rate.

Unit 2

Physics 524, University of Illinois ©George Gollin, 2024

10

SPI

Switch to running the SPI-connected BME680, and moving the channel 1 and channel 2
probes to the CS (chip select) and clock lines to the other BME680. With the scope still
triggering externally on Arduino pin 10, this is what I see:

Note that the CS line is “active LOW”: clock pulses are present when CS is LOW, not

HIGH. Fool around with the cursor function to determine the clock speed… you should find that
there’s a clock pulse every microsecond, which is a factor of ten faster than the I2C clock.

The basic functions performed by the BME680 are the same, regardless of your choice of
I2C or SPI.

This week’s homework assignment (due at the first class meeting next week)

1. SparkFun
Please read all three SparkFun tutorials listed above, near the start of this unit’s material.

2. SPI vs I2C speeds
Figure out how to disable the VOC measurement on your BME680s. Turn off all

Serial.print statements in loop except for an initial print announcing your intentions and a final
one giving your result. Compare how long it takes to read the BME680 100 times using I2C and
SPI. Yeah, SPI is much faster, but only if your device’s time to perform a measurement is small
compared to the time to execute an I2C or SPI instruction!

