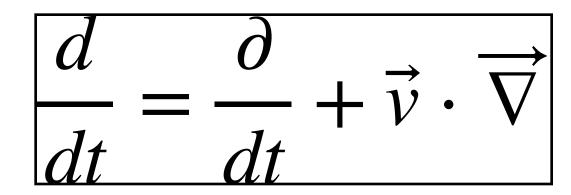
Introduction to Fluid Dynamics

Yuk Tung Liu **University of Illinois at Urbana-Champaign April 2024**

Convective Derivatives and Partial Derivatives

Partial time derivative
$$\frac{\partial q}{\partial t}$$
: rate of change of $q(t, x)$
Convective time derivative $\frac{dq}{dt}$: rate of change of
 $\frac{dq}{dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x}\frac{dx}{dt} + \frac{\partial q}{\partial y}\frac{dy}{dt} + \frac{\partial q}{\partial z}\frac{dz}{dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial t} + \frac{\partial q}{\partial t}\frac{dx}{dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial t}\frac{dx}{dt}$



x,y,z) at a fixed location.

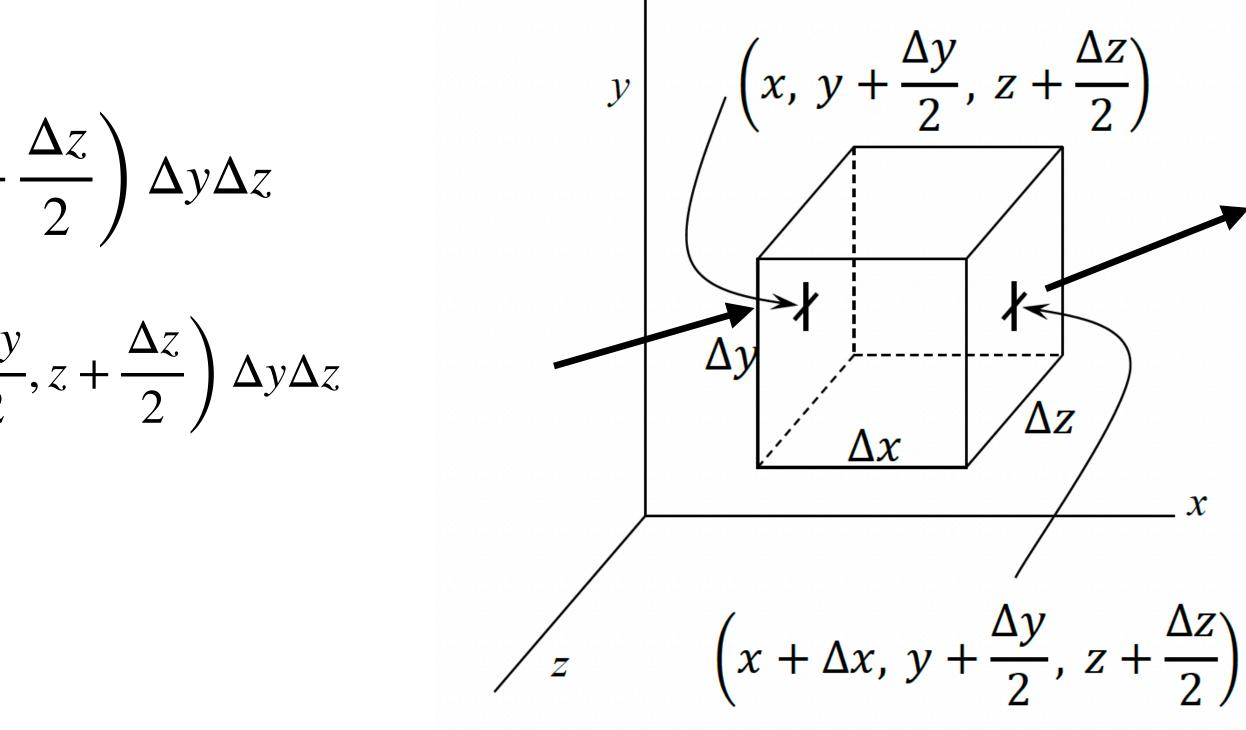
of q along a path.

 $+\frac{\partial q}{\partial x}v_x + \frac{\partial q}{\partial y}v_y + \frac{\partial q}{\partial z}v_z$

Continuity Equation I

Net mass flow rate in the x-direction:

$$\Delta \dot{m}_{x} = \rho \left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) v_{x} \left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta y}{2} \right)$$
$$-\rho \left(x + \Delta x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) v_{x} \left(x + \Delta x, y + \frac{\Delta y}{2} \right)$$
$$= -\frac{\partial}{\partial x} (\rho v_{x}) \Delta x \Delta y \Delta z$$
$$= -\frac{\partial}{\partial x} (\rho v_{x}) \Delta V$$



Continuity Equation II

Similarly, net mass flow rate in the y and z directions are

$$\Delta \dot{m}_y = -\frac{\partial}{\partial y}(\rho v_y)\Delta V$$
 , $\Delta \dot{m}_z = -\frac{\partial}{\partial z}(\rho v_y)$

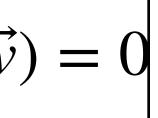
Total mass flowing into the volume/time is

$$\Delta \dot{m} = \frac{\partial}{\partial t} (\rho \Delta V) = -\left[\frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial y} (\rho$$

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v})$$

This is called the *continuity* equation.

 $+ \frac{\partial}{\partial z} (\rho v_z) \bigg| \Delta V = - \overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) \Delta V$



Continuity Equation III

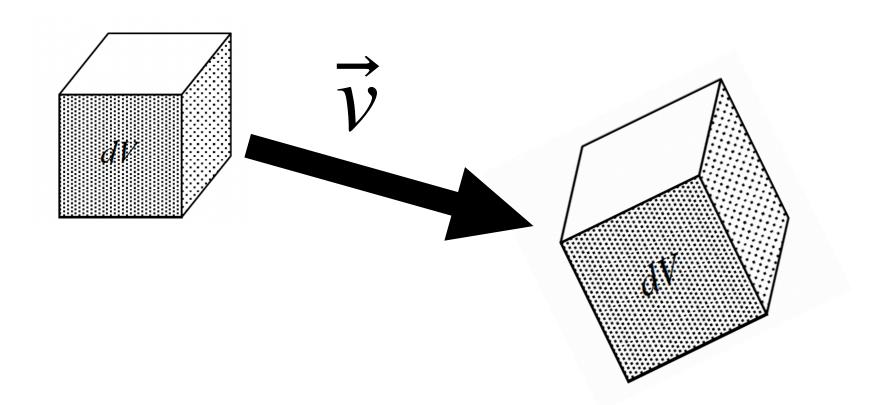
Suppose we follow the motion of the fluid.

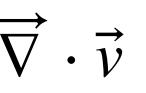
Recall:
$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho$$

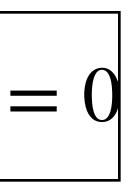
$$\frac{d\rho}{dt} = -\overrightarrow{\nabla}\cdot(\rho\overrightarrow{v}) + \overrightarrow{v}\cdot\overrightarrow{\nabla}\rho = -\rho\overrightarrow{\nabla}$$

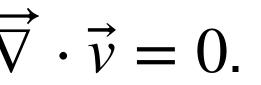
$$\frac{d\rho}{dt} + \rho \overrightarrow{\nabla} \cdot \overrightarrow{v}$$

For incompressible fluid, $d\rho/dt = 0$. Hence $\vec{\nabla} \cdot \vec{v} = 0$.





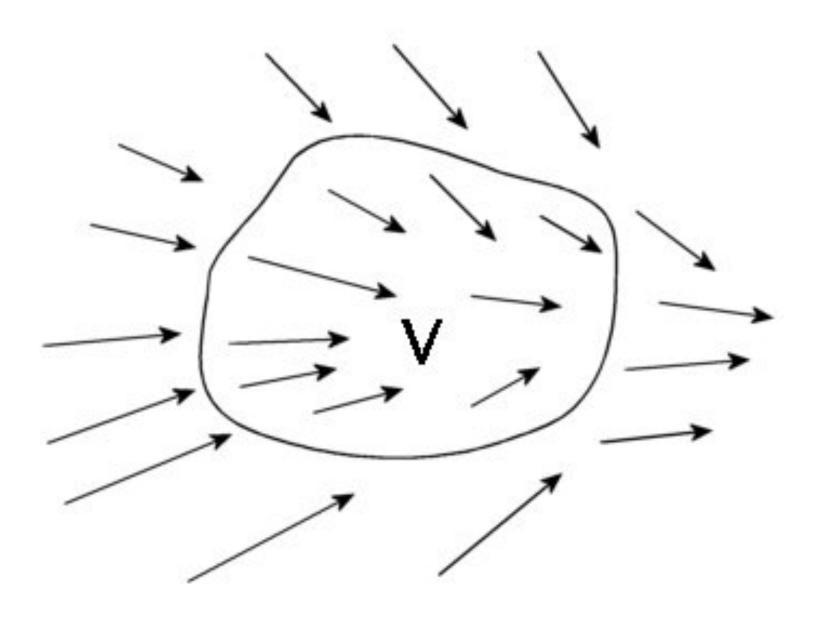


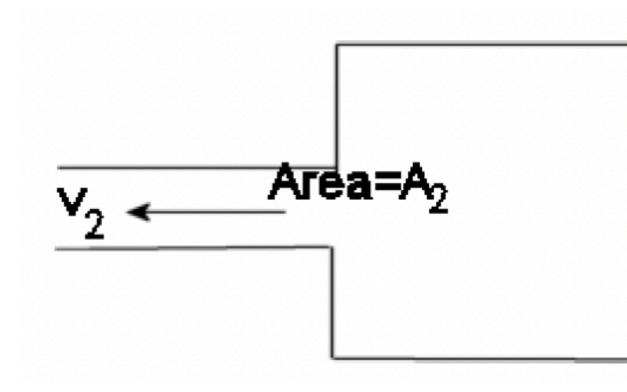


Integral Form of Continuity Equation

$$\begin{split} M &= \int_{V} \rho dV \\ \frac{dM}{dt} &= \int_{V} \frac{\partial \rho}{\partial t} dV = -\int_{V} \vec{\nabla} \cdot (\rho \vec{v}) dV \\ &= -\oint_{\partial V} \rho \vec{v} \cdot d\vec{S} \end{split}$$

Rate of increase in mass inside a volume V = net mass flow into the volume per unit time.





Consider air flowing from a tube with cross-sectional area A_1 into a region with cross-sectional area A_2 . In steady air flow, dM/dt = 0.

$$\rho v_1 A_1 = \rho v_2 A_2$$

$$v_2 = \frac{A_1}{A_2} v_1$$

Example 1: Flow Tube

Area=A1

Example 2: Water Leak

There is a small hole at the bottom of a container and water leaks out from the hole at speed v.

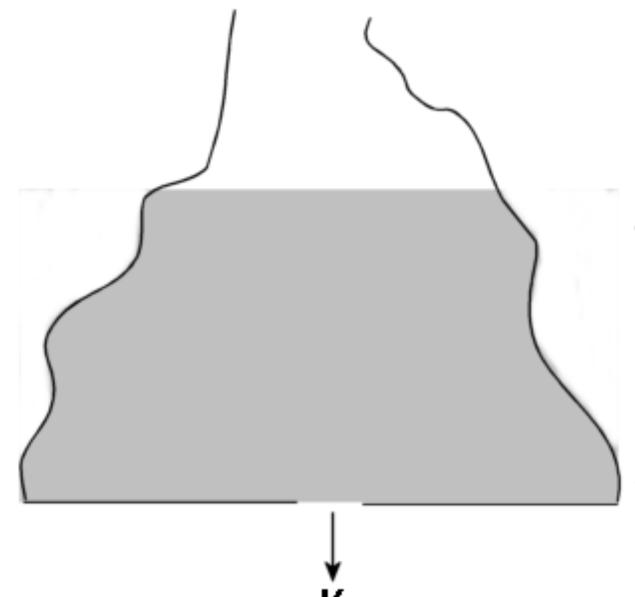
The water level y decreases slowly.

$$\frac{dM}{dt} = \frac{d(\rho V)}{dt} = -\rho v A_h$$

 A_h : area of the hole. V = Volume of water inside the container.

$$\frac{dV}{dt} = A(y)\dot{y} \qquad A(y): \text{ cross-section}$$

$$\Rightarrow \qquad \dot{y} = -\frac{A_h}{A(y)}v$$



nal area at y

Momentum Equation

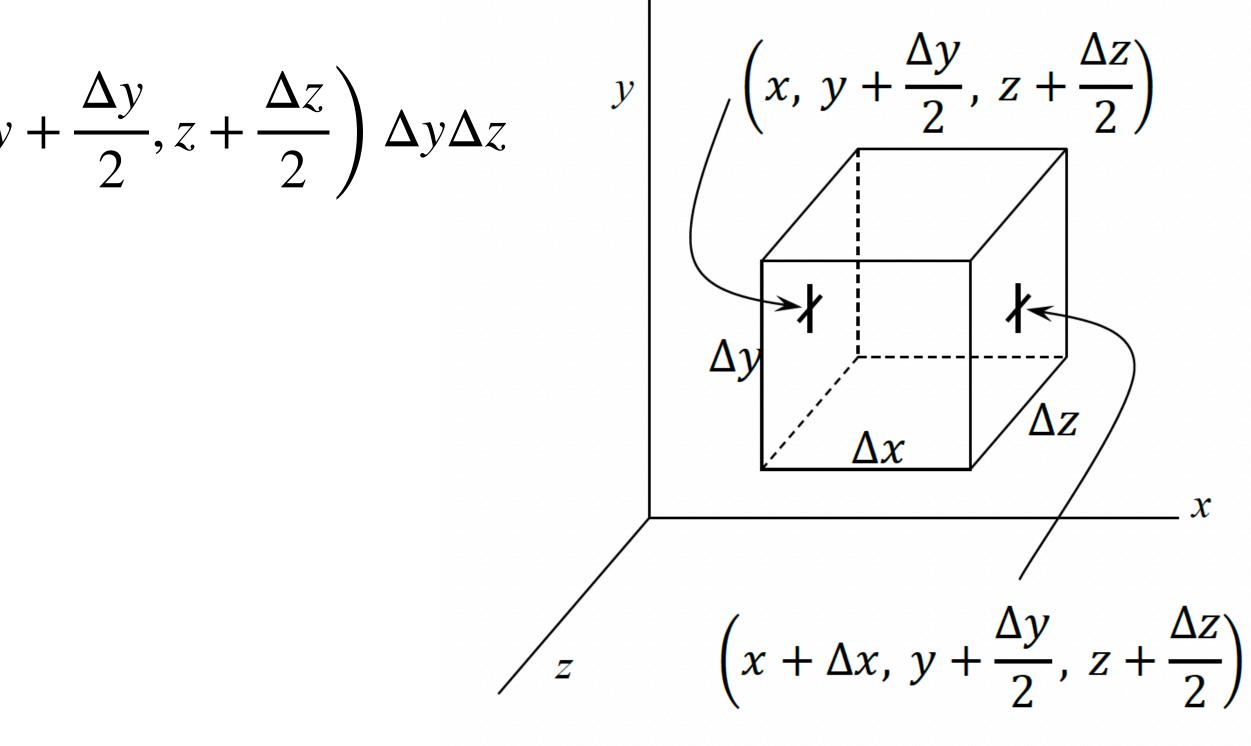
Net force associated with pressure in *x*-direction:

$$\Delta f_x = P\left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right) \Delta y \Delta z - P\left(x + \Delta x, y\right)$$
$$= -\frac{\partial P}{\partial x} \Delta x \Delta y \Delta z$$
$$= -\frac{\partial P}{\partial x} \Delta V$$

Similarly, $\Delta f_y = -\frac{\partial P}{\partial v} \Delta V$, $\Delta f_z = -\frac{\partial P}{\partial z} \Delta V$

Total net force associated with pressure:

$$\Delta \vec{f} = -\left(\frac{\partial P}{\partial x}\hat{x} + \frac{\partial P}{\partial y}\hat{y} + \frac{\partial P}{\partial z}\hat{z}\right)\Delta V = -\overrightarrow{\nabla}P.$$



 ΔV

In addition to pressure, gravity also acts on the fluid:

$$\Delta \vec{f} = -\vec{\nabla} P \Delta V + (\rho \Delta V) \vec{g}$$

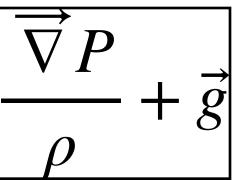
From Newton's second law:

$$(\rho \Delta V) \frac{d\vec{v}}{dt} = -\vec{\nabla} P \Delta V + \rho \vec{g} \Delta V$$
$$\frac{d\vec{v}}{dt} = \frac{d\vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{v}$$

This is also called Euler's equation.

It describes the conservation of momentum of an *ideal fluid* (i.e. without viscosity).

Momentum Equation (cont)



$$\vec{v} \cdot \vec{\nabla} \vec{v} = v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y} + v_z \frac{\partial \vec{v}}{\partial z}$$

$$= \left(v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) \hat{x} + \left(v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) \hat{y} + \left(v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right)$$

If \vec{v} is represented by a row vector, $\vec{\nabla} \vec{v}$ represented by a 3 × 3 matrix, $\vec{v} \cdot \vec{\nabla} \vec{v}$ can be represented by a row vector by

$$\vec{v} \cdot \vec{\nabla} \vec{v} = (v_x \quad v_y \quad v_z) \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_y}{\partial x} & \frac{\partial v_z}{\partial x} \\ \frac{\partial v_x}{\partial y} & \frac{\partial v_y}{\partial y} & \frac{\partial v_z}{\partial y} \\ \frac{\partial v_x}{\partial z} & \frac{\partial v_y}{\partial z} & \frac{\partial v_z}{\partial z} \end{pmatrix}$$

The Meaning of $\vec{v} \cdot \vec{\nabla} \vec{v}$

Hydrostatics

Momentum equation: $\frac{d\vec{v}}{dt} = -\frac{\vec{\nabla}P}{\rho} + \vec{g}$

Hydrostatics: $\vec{v} = 0 \Rightarrow \vec{\nabla} P = \rho \vec{g}$

Pressure gradient is parallel to $\vec{g} \Rightarrow$ surface of constant *P* (isobar) is perpendicular to \vec{g} . $0 = \overrightarrow{\nabla} \times \overrightarrow{\nabla} P = \overrightarrow{\nabla} \rho \times \vec{g}$

 \Rightarrow density gradient is parallel to $\vec{g} \Rightarrow$ surface of constant ρ is perpendicular to \vec{g} .

Let $\vec{g} = g\hat{z}$ (\hat{z} points downward), $P = P(z), \rho = \rho(z)$.

 $\overrightarrow{\nabla}P = \frac{dP}{dz}\hat{z} = \rho g\hat{z}$

Hydrostatics (cont)

$$\frac{dP}{dz} = \rho g$$
$$P(z) = \int \rho(z)gdz$$

Consider a cylinder with cross-sectional area A and height z.

$$P(z) = \frac{1}{A} \left(\int \rho(z) A dz \right) g = \frac{M_f(z)g}{A}$$

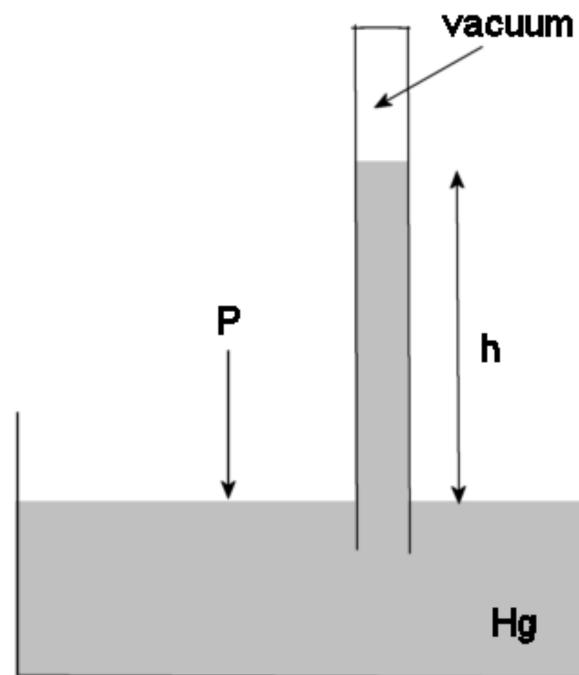
Pressure at depth z is the weight of the fluid per unit area above z.

For incompressible fluid, $\rho(z) = \rho$ is constant,

 $P(z) = \rho g z$

Ζ

Mercury Barometer



$$P = \rho_{\rm Hg} g h$$

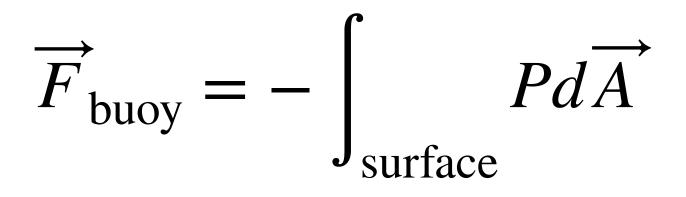
Standard atmospheric pressure = 101kPa \approx 760 mmHg

Hg

Archimedes' Principle

Consider an object floating stationary in a fluid.

Buoyant force acting on the object:



Imagine removing the body and replacing it by fluid.

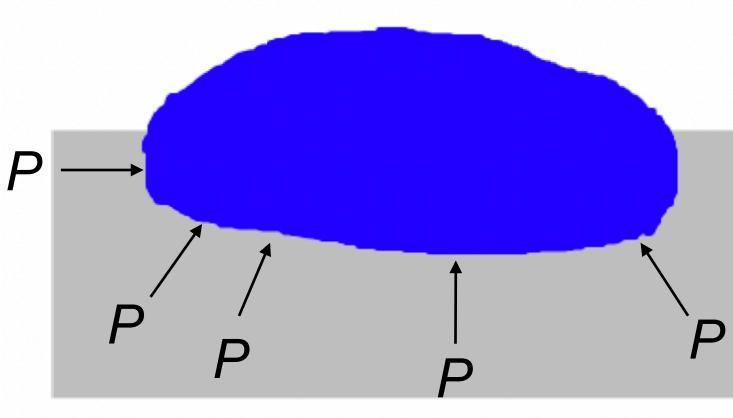
Pressure P(z) and density $\rho(z)$ remain the same.

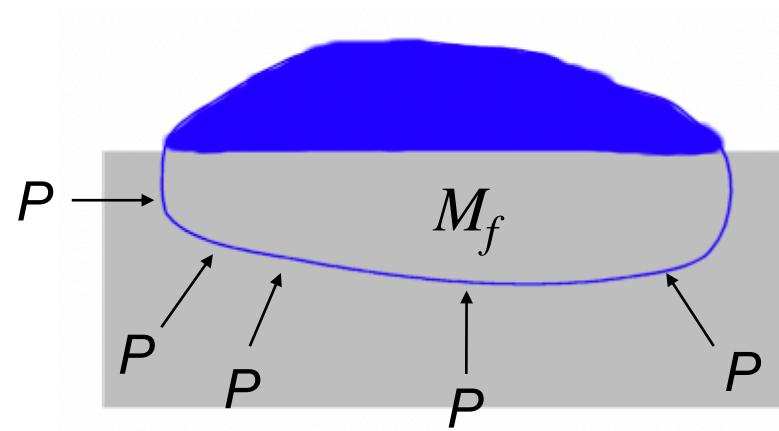
Hydrostatic eq: $\overrightarrow{\nabla}P = \rho \overrightarrow{g}$

$$\int_{V} \overrightarrow{\nabla} P dV = \int \rho \vec{g} dV \quad \Rightarrow \quad \int_{\text{surface}} P d\vec{A} = M_{f} \vec{g}$$

 M_f : mass of the fluid displaced by the object.

Archimedes' principle: $\vec{F}_{buoy} = -M_f \vec{g}$ (buoyant force = weight of fluid displaced by the object)





Tip of the lceberg

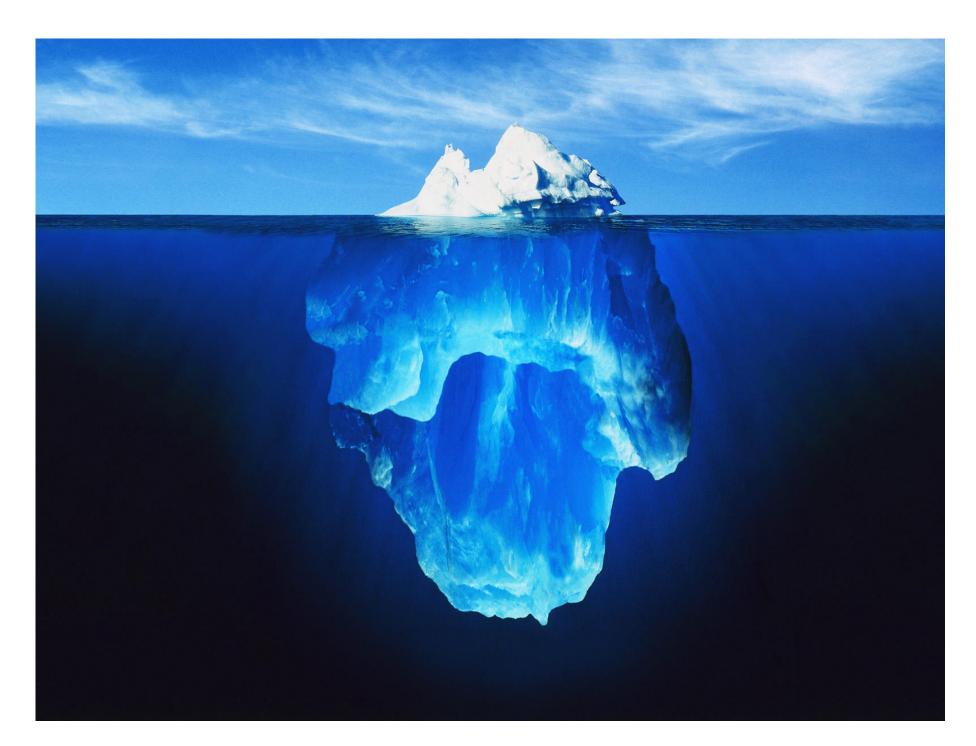
Density of ice $\rho_i = 920 \text{ kg/m}^3$ Density of sea water $\rho_w = 1027 \text{ kg/m}^3$ V_a : volume of iceberg above water V: total volume of iceberg

In static state, weight of iceberg = buoyant force

$$\rho_i Vg = \rho_w (V - V_a)g$$

$$\frac{V_a}{V} = \frac{\rho_w - \rho_i}{\rho_w} = 0.10$$

Only 10% of the iceberg is above the sea water!



Credit: <u>clipground.com</u>

Earth's Atmosphere I

Earth's atmospheric pressure is closely approximated by the hydrostatic equilibrium.

Let
$$\vec{g} = -g\hat{z}$$
 (\hat{z} points upward).
 $\frac{dP}{dz} = -\rho g$ ideal gas law: $P = nkT$

 $R = N_A k = 8.31 \text{J/(mol K)} = \text{gas constant}$

M: molar mass of air = 0.02896 kg/mol (78% N₂, 21% O₂, 0.9% Ar and small amount of other gases)

$$\frac{dP}{dz} = -\frac{Mg}{RT}P \quad \Rightarrow \quad \frac{dP}{P} = -\frac{Mg}{P}$$

$$P(z) = P_0 \exp\left(-\int_0^z \frac{Mg}{RT(z')}\right)$$

 P_0 : pressure at z=0.

 $r = \frac{\rho}{M}RT$

 $\frac{Mg}{RT}dz$

-dz'

Earth's Atmosphere II

* If $T = T_0$ = constant (isothermal)

$$P(z) = P_0 e^{-Mgz/RT_0}$$
 (isothermal)

* If $T = T_0 - Lz$ (*L* is called the temperature lapse rate):

$$P(z) = P_0 \left(1 - \frac{Lz}{T_0} \right)^{Mg/RL}$$
 (lapse)

Recall:

$$\lim_{k \to \infty} \left(1 + \frac{x}{k} \right)^k = \lim_{k \to \infty} \exp\left[k \ln\left(1 + \frac{x}{k} \right) \right] = \lim_{k \to \infty} \exp\left(k \cdot \frac{x}{k} \right) = e^x$$

The lapse equation reduces to the isothermal equation in the limit $L \rightarrow 0$.

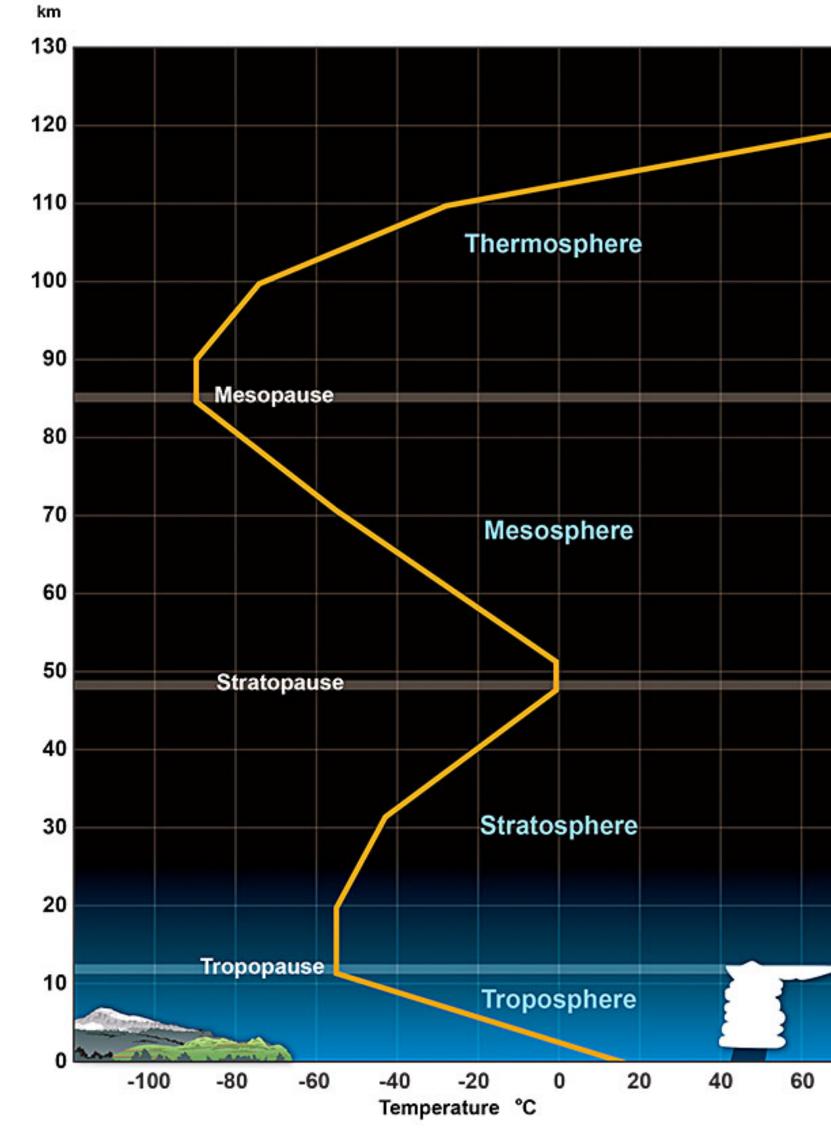
Earth's Atmosphere III

More realistic atmospheric model divides the atmosphere into several layers. Each layer has its own temperature lapse rate:

$$P(z) = P_b \left[1 - \frac{L_b(z - z_b)}{T_b} \right]^{Mg/RL_b}$$

 P_b : pressure at the bottom of layer b.

- T_b : temperature at the bottom of layer b.
- L_b : temperature lapse rate in layer b.
- z_b : altitude at the bottom of layer *b*.



Credit: NOAA

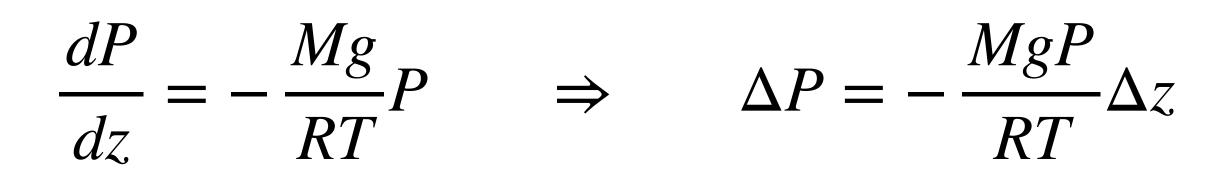
Earth's Atmosphere IV

Sub- script b	Geopotential height above mean Sea level (z)		Static pressure P _b		Standard temperature (K)	Temperature lapse rate	
						L_b	
	(m)	(ft)	(Pa)	(inHg)	T_b	(K/m)	(K/ft)
0	0	0	101 325.00	29.92126	288.15	0.0065	0.0019812
1	11 000	36,089	22 632.10	6.683245	216.65	0.0	0.0
2	20 000	65,617	5474.89	1.616734	216.65	-0.001	-0.0003048
3	32 000	104,987	868.02	0.2563258	228.65	-0.0028	-0.00085344
4	47 000	154,199	110.91	0.0327506	270.65	0.0	0.0
5	51 000	167,323	66.94	0.01976704	270.65	0.0028	0.00085344
6	71 000	232,940	3.96	0.00116833	214.65	0.002	0.0006096

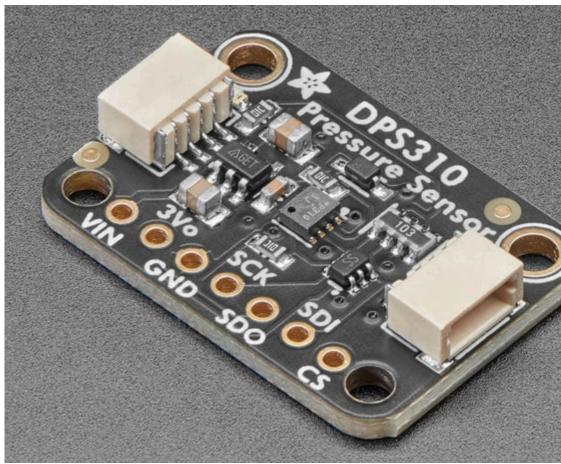
Credit: Wikimedia (https://en.wikipedia.org/wiki/Barometric_formula)

DPS 310 Pressure Sensor

According to Adafruit, their DPS 310 pressure sensor can measure the change in pressure to an accuracy of 0.2 Pa.



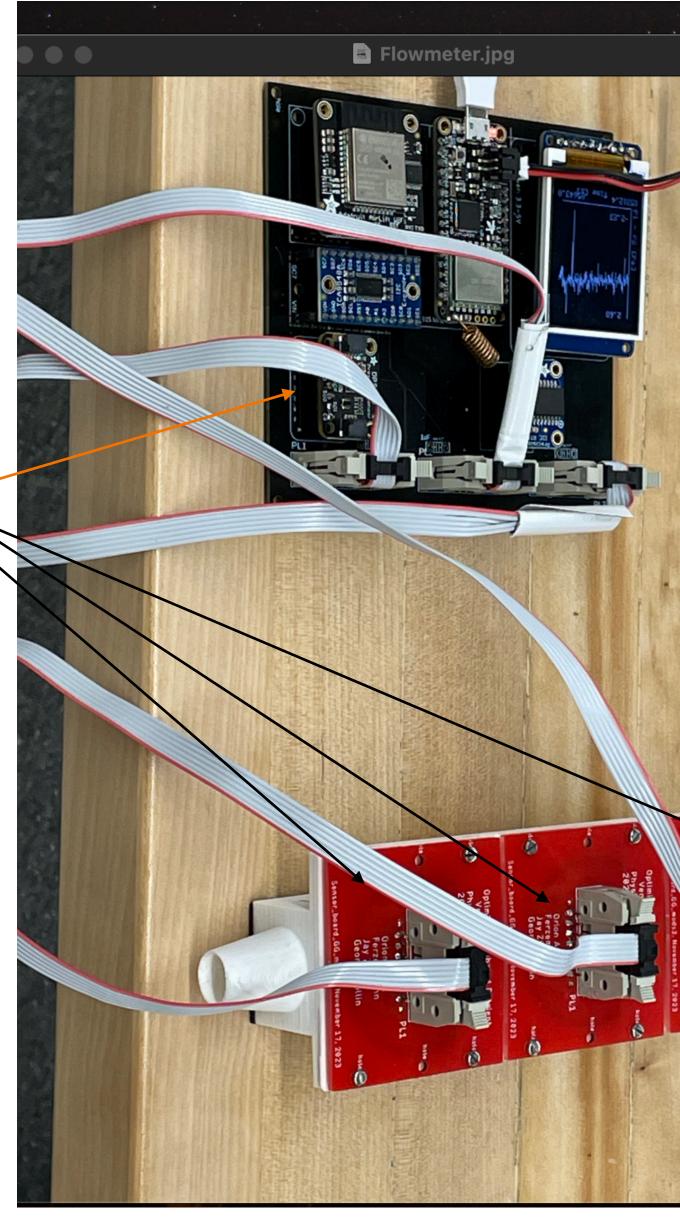
 $\Delta P = 0.2$ Pa corresponds to $\Delta z = 1.7$ cm for M = 0.02896 kg/mol, P = 101 kPa, and T = 300 K.

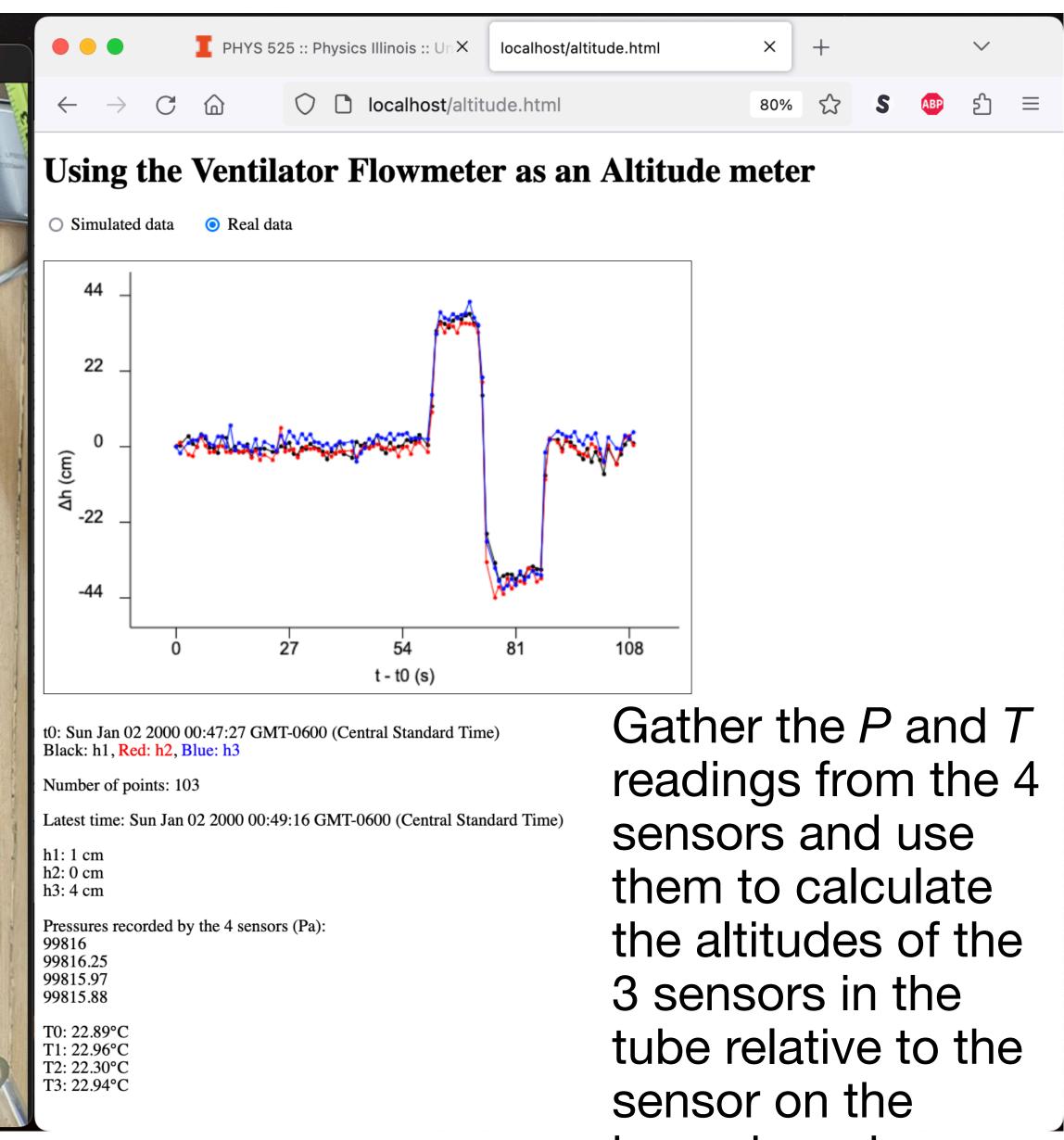


Credit: Adafruit

Class Demonstration

4 DPS 310 sensors: 1 on the home board, 3 inside the flow tube





home board.

Momentum equation: $\frac{d\vec{v}}{dt} = -\frac{\vec{\nabla}P}{\rho} + \vec{g}$ $\vec{v} \cdot \frac{d\vec{v}}{dt} = -\frac{\vec{v} \cdot \vec{\nabla} P}{\rho} + \vec{v} \cdot \vec{g} \quad , \qquad \vec{v} \cdot \cdot$

 $\vec{g} = -\vec{\nabla}U$, U = gh is gravitational potential, h is height from a reference point.

Gravity is static near Earth's surface, $\partial U/\partial t = 0$.

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} + \vec{v} \cdot \vec{\nabla} U = \vec{v} \cdot \vec{\nabla} U = -\vec{v} \cdot \vec{g}$$

$$\Rightarrow \quad \frac{d}{dt} \left(\frac{1}{2} v^2 + U \right) + \frac{\vec{v} \cdot \vec{\nabla} P}{\rho} = 0$$

Energy Equation

$$\frac{d\vec{v}}{dt} = \frac{1}{2}\frac{d}{dt}(\vec{v}\cdot\vec{v}) = \frac{d}{dt}\left(\frac{v^2}{2}\right)$$

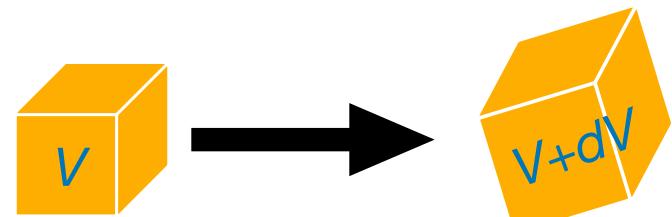
First Law of Thermodynamics

Consider a fluid element in a small volume V.

Mass $m = \rho V$, internal energy is E. First law of thermodynamics: dE = dQ - PdV

dQ is the amount of heat added to the volume. In the absence of heat generation and heat flow, dQ=0. The system is said to be adiabatic and $\frac{dE}{dt} = -P\frac{dV}{dt}$. Divide the equation by the mass $m = \rho V$ and write w = E/m (specific internal energy).

$$\frac{dw}{dt} = -\frac{P}{\rho V}\frac{dV}{dt} = -P\frac{d}{dt}\left(\frac{V}{\rho V}\right) = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) = -\frac{d}{dt}\left(\frac{P}{\rho}\right) + \frac{1}{\rho}\frac{dP}{dt}$$
$$\frac{d}{dt}\left(w + \frac{P}{\rho}\right) = \frac{1}{\rho}\frac{dP}{dt} = \frac{1}{\rho}\frac{\partial P}{\partial t} + \frac{\vec{v}\cdot\vec{\nabla}P}{\rho}$$
$$V \longrightarrow V$$
$$\frac{\vec{v}\cdot\vec{\nabla}P}{\rho} = \frac{d}{dt}\left(w + \frac{P}{\rho}\right) - \frac{1}{\rho}\frac{\partial P}{\partial t}$$
$$V = \rho V = (\rho + d\rho)(V + \rho)$$



uid element dV

Bernoulli's Equation

Previous slides:

$$\frac{d}{dt}\left(\frac{1}{2}v^2 + U\right) + \frac{\vec{v}\cdot\vec{\nabla}P}{\rho} = 0 \quad , \quad \frac{\vec{v}\cdot\vec{\nabla}P}{\rho} = \frac{d}{dt}\left(w + \frac{P}{\rho}\right) - \frac{1}{\rho}\frac{\partial P}{\partial t}$$

Combine these two equations:

$$\frac{d}{dt}\left(\frac{1}{2}v^2 + \frac{P}{\rho} + U + w\right) = \frac{1}{\rho}\frac{\partial P}{\partial t}$$

In steady flow, $\partial P/\partial t = 0$, the resulting equation is called Bernoulli's equation.

$$\frac{d}{dt}\left(\frac{1}{2}v^2 + \frac{P}{\rho} + U + w\right) = 0$$

Recall:
$$\frac{dw}{dt} = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) = 0$$
 for incompressible fluid $\Rightarrow \frac{d}{dt}\left(\frac{1}{2}v^2 + \frac{P}{\rho} + U\right) = 0$

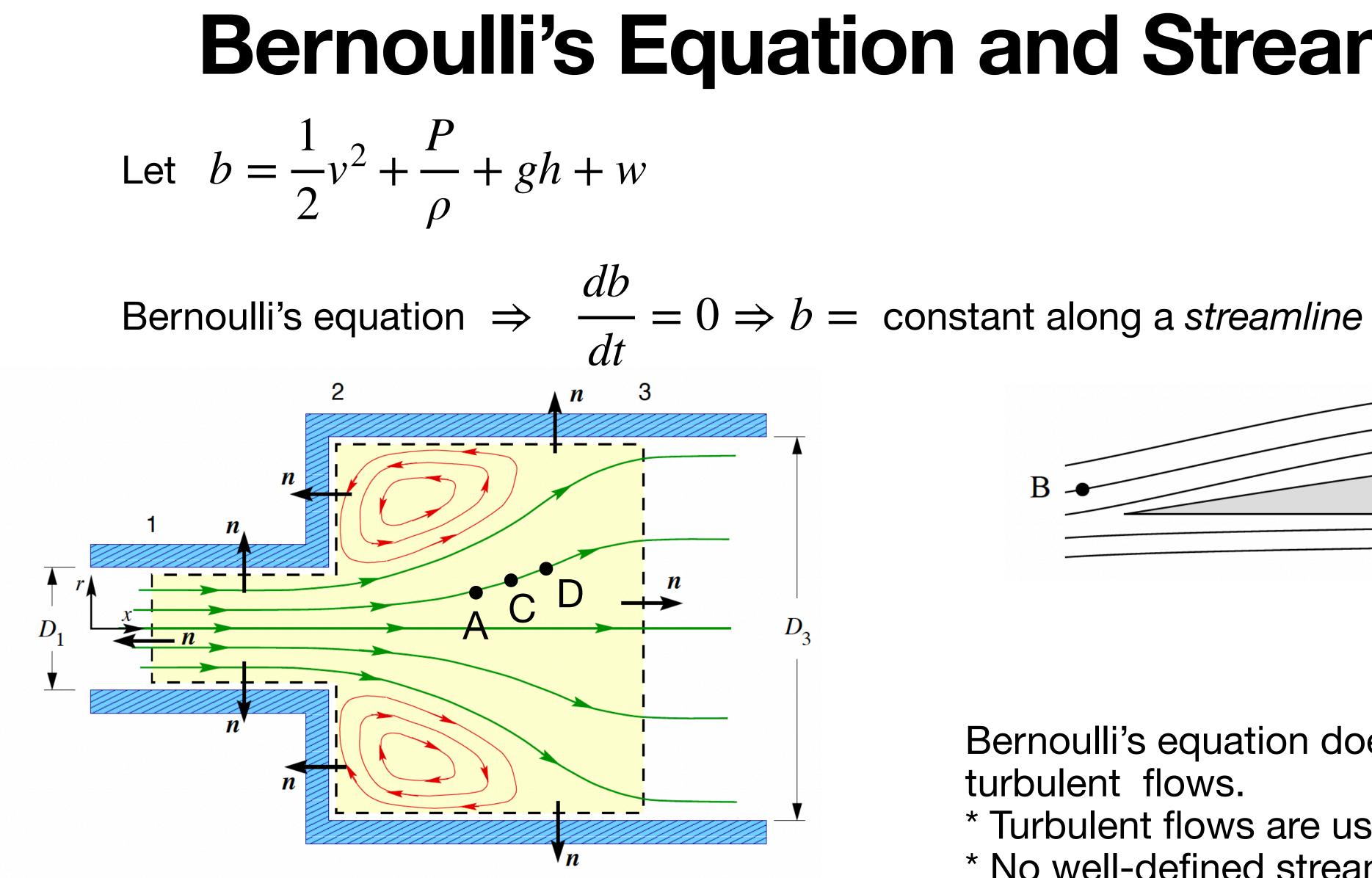
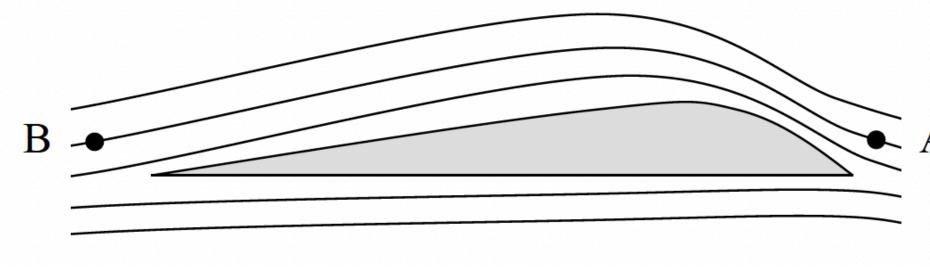


Figure 4.8: Flow through a rapidly-expanding pipe.

Figure credit: J.M. McDonough, Lectures In Elementary Fluid **Dynamics: Physics, Mathematics and Applications**

Bernoulli's Equation and Streamline



Bernoulli's equation doesn't apply to turbulent flows.

* Turbulent flows are usually not steady

- * No well-defined streamlines
- * Viscosity is important

Water is flowing out of a rectangular tank from a small hole at the bottom. How long does it take to excavate the water from the tank?

Apply Bernoulli's equation at the top and at the hole:

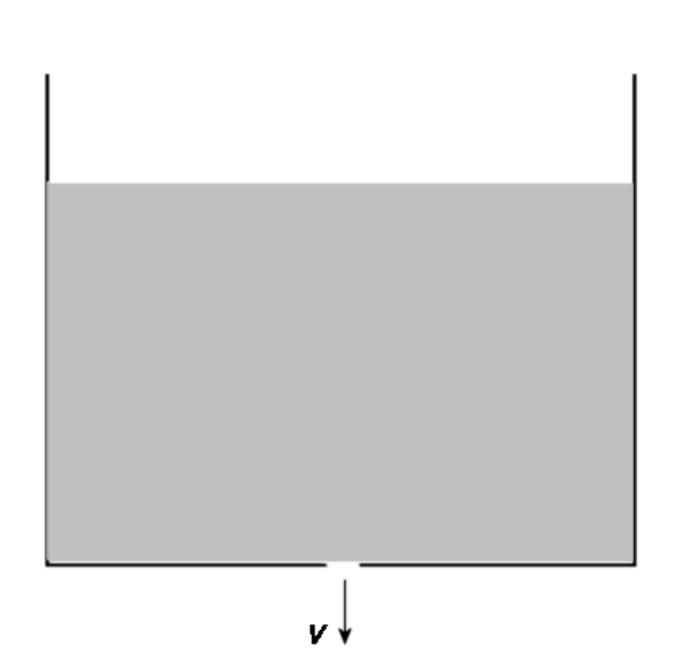
$$\frac{1}{2}\dot{y}^{2} + \frac{P}{\rho} + gy = \frac{1}{2}v^{2} + \frac{P}{\rho} \implies v^{2} - \dot{y}^{2} =$$
Previously, we find $\dot{y} = -\frac{A_{h}}{A}v$

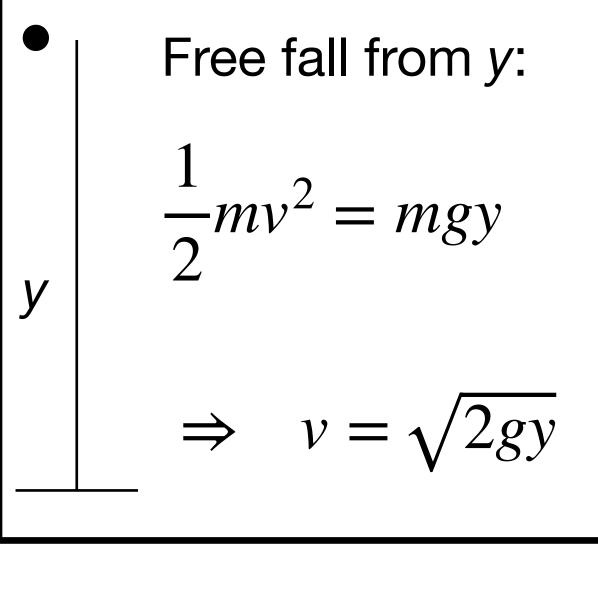
 A_h : area of the hole, A: cross-sectional area of the tank.

$$\Rightarrow \left(1 - \frac{A_h^2}{A^2}\right) v^2 = 2gy \quad ,$$
$$v = \sqrt{2gy} \left(1 - \frac{A_h^2}{A^2}\right)^{-1/2} \approx \sqrt{2gy} \quad \text{for } A_h \ll A$$

This is the free-fall speed from y. As the water level drops, the speed also decreases.

Example





Rate of change of water level: $\dot{y} = -\frac{A_h}{\Delta}v = -\frac{A_h}{\Delta}\sqrt{2gy}$

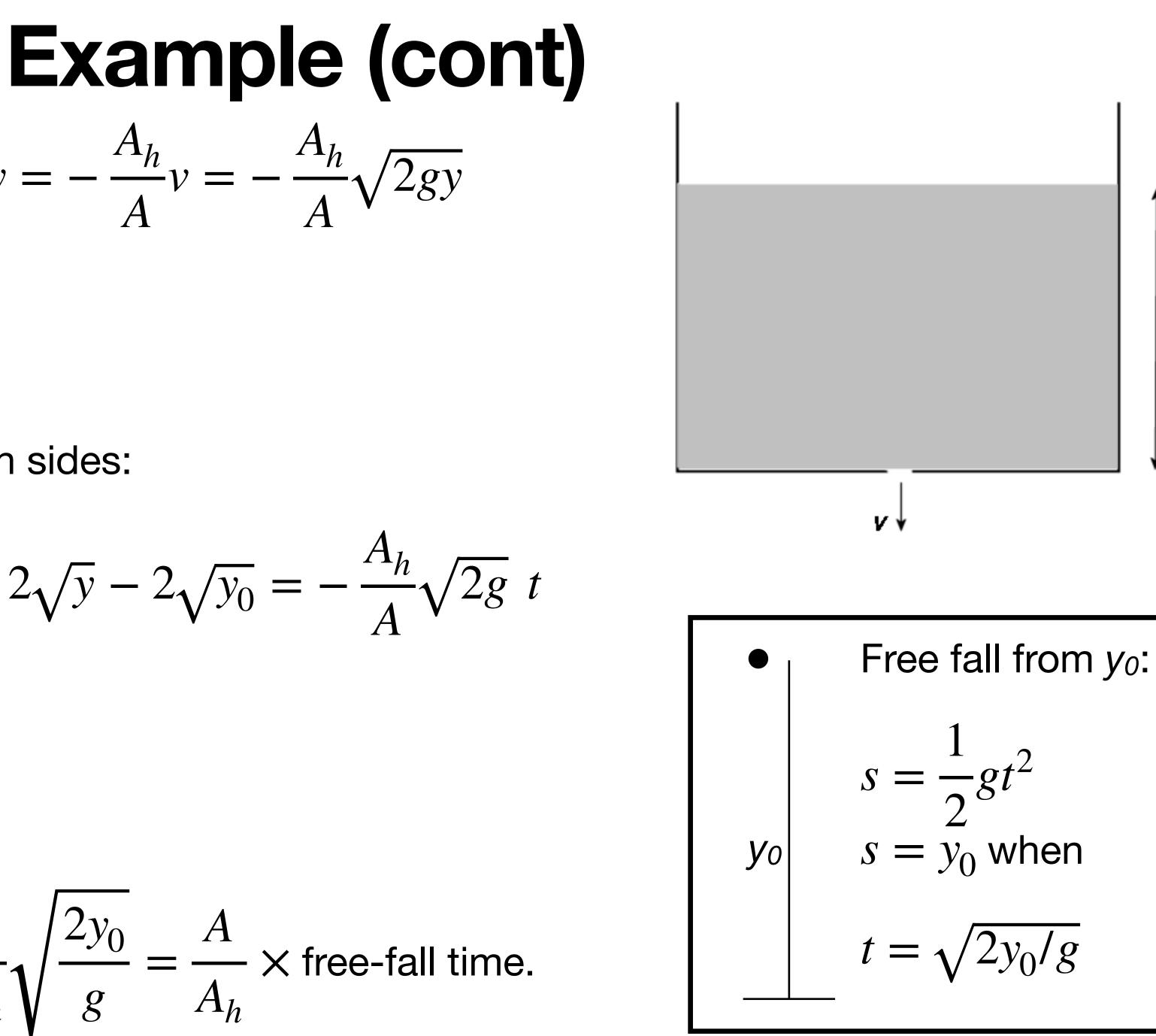
$$\frac{dy}{\sqrt{y}} = -\frac{A_h}{A}\sqrt{2g}dt$$

Let $y_0 = y(t = 0)$. Integrate both sides:

$$\int_{y_0}^{y} \frac{dy'}{\sqrt{y'}} = -\frac{A_h}{A}\sqrt{2g} \ t \qquad , \qquad 2\sqrt{y} - 2\sqrt{y}$$

$$y(t) = \left(\sqrt{y_0} - \frac{A_h}{A}\sqrt{\frac{g}{2}}t\right)^2$$

Setting y(T) = 0 gives $T = \frac{A}{A_h} \sqrt{\frac{2y_0}{g}} = \frac{A}{A_h} \times$ free-fall time.



$$T = \frac{A}{A_h} \sqrt{\frac{2y_0}{g}}$$

For $y_0 = 0.3 \text{ m}$, $A/A_h = 40$, $T \approx 10 \text{ s}$.

Bernoulli's equation only applies to steady flow.

It's still a good approximation if the rate of change is sufficiently slow, which requires $T \gg$ dynamical time scales.

Two dynamical time scales:

- (1) Time associated with pressure ~ time for sound to travel y_0 : $\tau = y_0/c_s$. Sound speed in water ≈ 1500 m/s, $\tau \approx 0.0002$ s $\ll T$.
- (2) Time associated with gravity ~ free-fall time. $T = A/A_h \times$ free-fall time = 40 free-fall time. Relative error in estimated $T \sim 1/40 = 2.5 \%$.

Example (cont)

V ∜

Vorticity is defined as $\overrightarrow{\omega} = \overrightarrow{\nabla} \times \overrightarrow{v}$. In Cartesian coordinates, $\overrightarrow{\omega} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right)\hat{x} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right)\hat{y}$

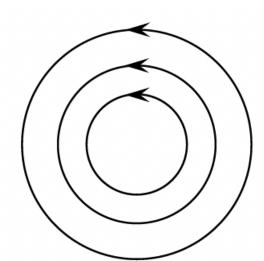
It describes the local spinning motion of fluid. Consider the velocity in the fluid near a vortex looks like this: The velocity field is given by $\vec{v} = \vec{\Omega} \times \vec{r}$, where $\vec{\Omega}$ is a constant vector. In cylindrical coordinates with $\overrightarrow{\Omega} = \Omega \hat{z}$, we have $v_{\phi} = \Omega r$ and $v_r = v_z = 0$.

$$\overrightarrow{\omega} = \frac{1}{r} \frac{\partial}{\partial r} (rv_{\phi})\hat{z} = 2\Omega\hat{z}$$

The fluid is irrotational if $\vec{\omega} = 0$.

Vorticity

$$\hat{y} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right)\hat{z}$$



Vector Derivatives in Cylindrical Coordinates

CYLINDRICAL $dI = dr \hat{r} + r d\phi \hat{\phi} + dz \hat{z}; d\tau = r dr d\phi dz$ Gradient. $\nabla t = \frac{\partial t}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial t}{\partial \phi}\hat{\phi} + \frac{\partial t}{\partial z}\hat{z}$ Divergence. $\nabla \cdot \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$ Curl. $\nabla \times \mathbf{v} = \left[\frac{1}{r}\frac{\partial v_z}{\partial \phi} - \frac{\partial v_{\phi}}{\partial z}\right]\hat{r} + \left[\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}\right]\hat{\phi}$ $+\frac{1}{r}\left[\frac{\partial}{\partial r}(rv_{\phi})-\frac{\partial v_{r}}{\partial \phi}\right]\hat{z}$ Laplacian.

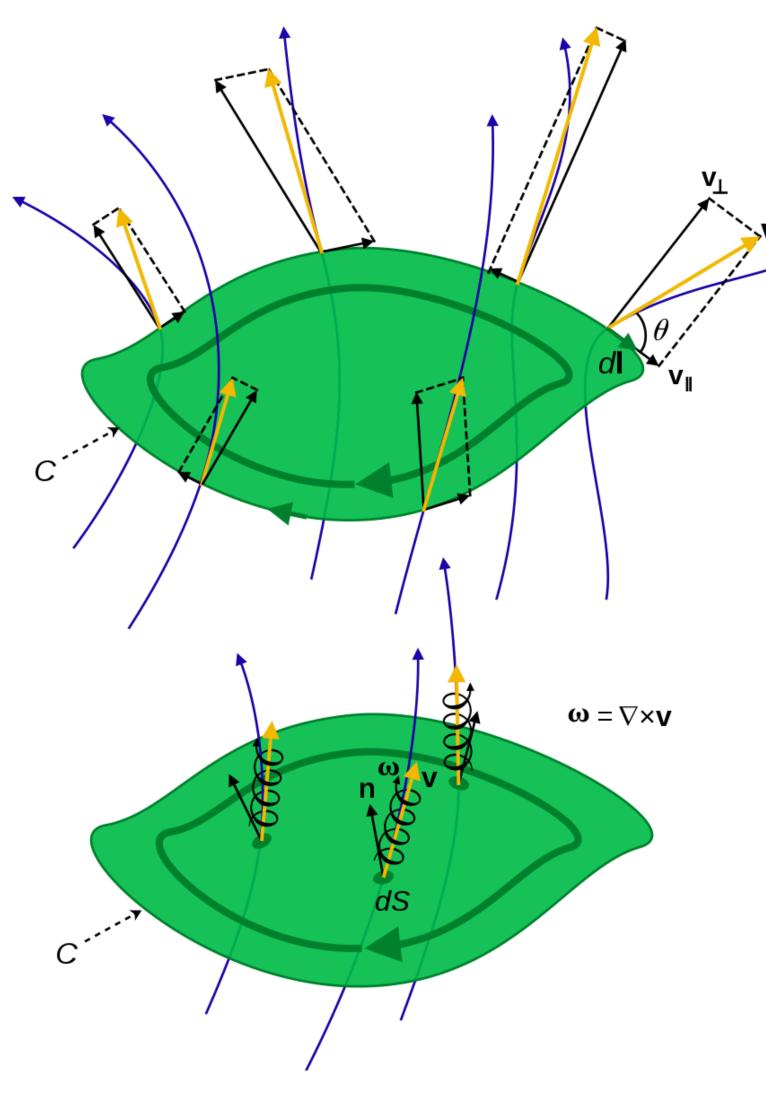
 $\nabla^2 t = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial t}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 t}{\partial d^2} + \frac{\partial^2 t}{\partial z^2}$

Circulation

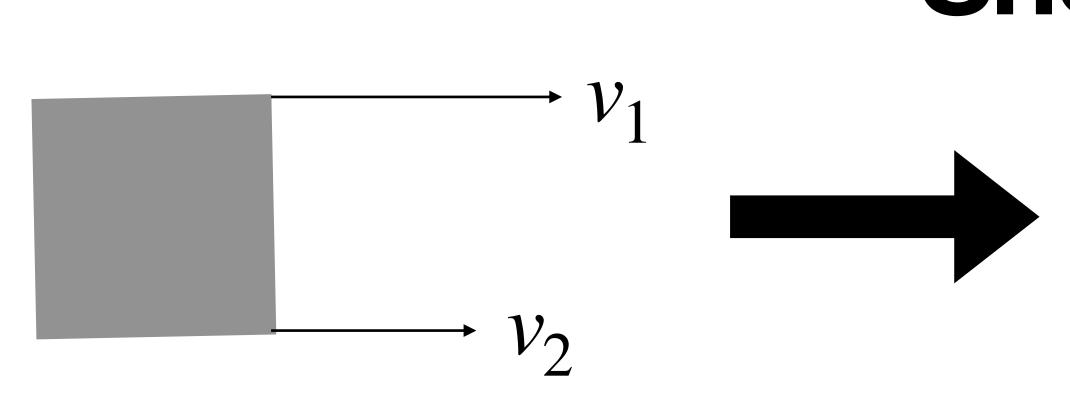
- Circulation is closely related to vorticity
- Circulation of a fluid around a closed loop is defined as $\Gamma = \oint \vec{v} \cdot d\vec{l}$
- Stoke's theorem:

$$\Gamma = \int_{S} (\overrightarrow{\nabla} \times \overrightarrow{v}) \cdot d\overrightarrow{S} = \int_{S} \overrightarrow{\omega} \cdot d\overrightarrow{S}$$

• If the flow is irrotational, $\overrightarrow{\omega} = 0 \Rightarrow \Gamma = 0$.



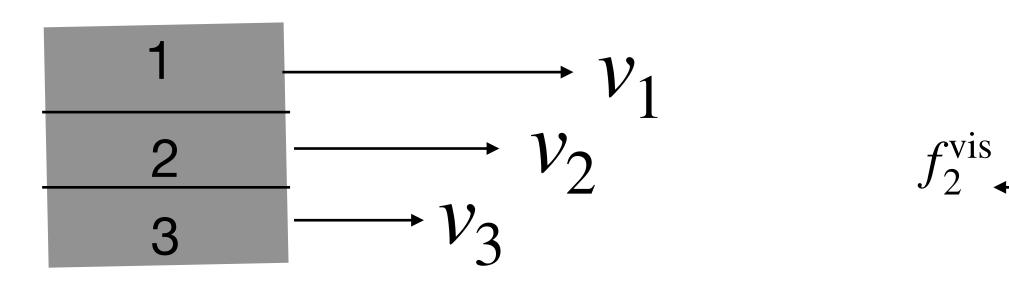
Credit: Wikipedia



Shearing can occur when neighboring fluid moves with different velocities.

In the presence of viscosity, the shear motion develops a viscous stress that opposes the motion.

The stress acting on a fluid element can be characterized by a stress tensor T.



Shearing

$$- f_1^{\text{vis}}$$

$$\begin{aligned} & \text{Simple Mod} \\ f_1^{\text{vis}} &= \mu \frac{\partial v_x(x, y + dy/2, z)}{\partial y} dx dz \\ f_2^{\text{vis}} &= -\mu \frac{\partial v_x(x, y - dy/2, z)}{\partial y} dx dz \end{aligned}$$

 μ : coefficient of shear viscosity

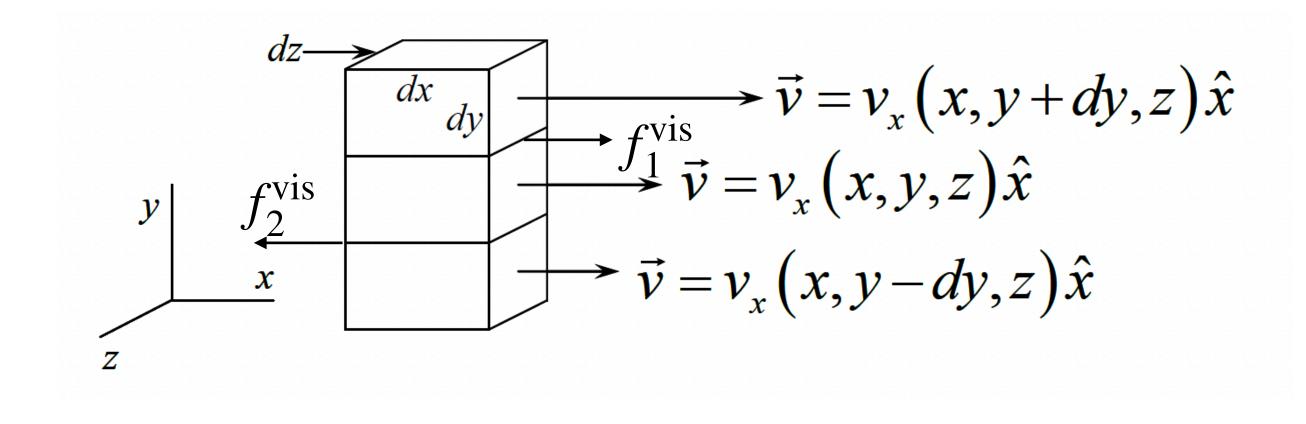
Net force
$$f_x^{\text{vis}} = f_1^{\text{vis}} + f_2^{\text{vis}} = \mu \frac{\partial^2 v_x}{\partial y^2} dx dy dz =$$

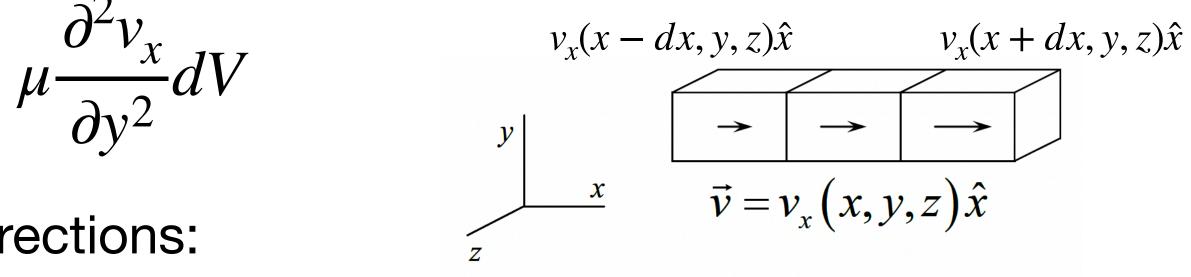
Adding the contributions from the other two directions: $f_x^{\text{vis}} = \mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) dV = \mu \nabla^2 v_x dV$

The y and z-components of the viscous force are obtained by changing v_x to v_y and v_z .

Viscous force:
$$\vec{f}^{\text{vis}} = \mu \nabla^2 \vec{v} dV$$

del of Viscosity





Stress Tensor

• Stress tensor can be represented by a 3×3 matrix. In Cartesian coordinates,

$$\dot{\overrightarrow{T}} = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix}$$

• Force acting on a small surface $d\vec{A} = \hat{n}dA$ is given by

 $d\overrightarrow{F} = \overleftrightarrow{T} \cdot d\overrightarrow{A} = dA(T_{xx}n_x + T_{xy}n_y + T_{xz}n_z)\hat{x} + dA(T_{yx}n_x + T_{yy}n_y + T_{yz}n_z)\hat{y} + dA(T_{zx}n_x + T_{zy}n_y + T_{zz}n_z)\hat{z}$

$$= dA \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix} \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$$

• It can be shown that \overleftarrow{T} must be symmetry: T

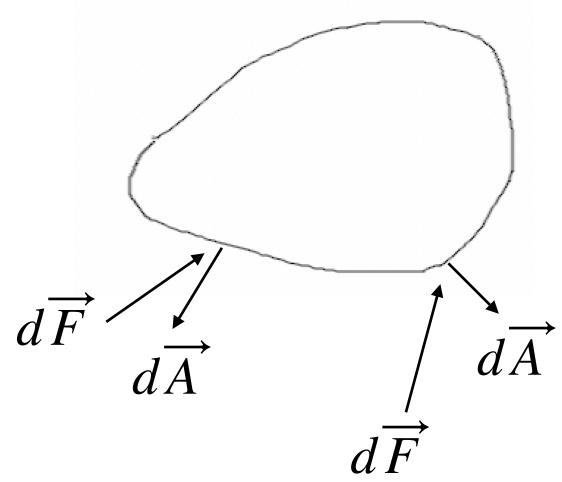
$$T_{ij} = T_{ji}$$

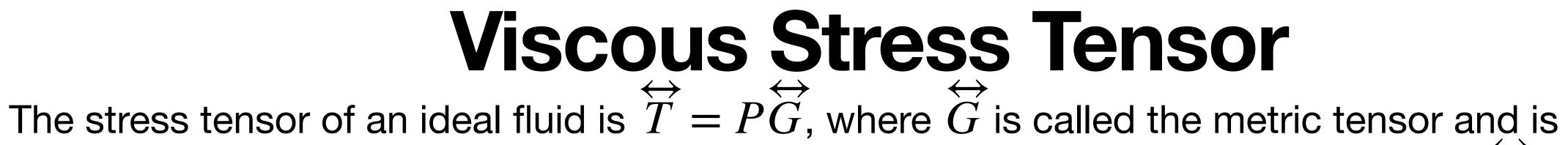
Force on Fluid

$$\overrightarrow{F} = -\int_{S} \overleftrightarrow{T} \cdot d\overrightarrow{A}$$

Note the negative sign since $d\overrightarrow{A}$ points outward. Divergence theorem:

$$\vec{F} = -\int_{V} \vec{\nabla} \cdot \vec{T} dV \qquad d\vec{I}$$
$$\vec{\nabla} \cdot \vec{T} = \left(\frac{\partial T_{xx}}{\partial x} + \frac{\partial T_{yx}}{\partial y} + \frac{\partial T_{zx}}{\partial z}\right) \hat{x} + \left(\frac{\partial T_{xy}}{\partial x} + \frac{\partial T_{yy}}{\partial y} + \frac{\partial T_{zy}}{\partial z}\right) \hat{y} + \left(\frac{\partial T_{xz}}{\partial x} + \frac{\partial T_{yz}}{\partial y} + \frac{\partial T_{zz}}{\partial z}\right) \hat{z}$$
Force per unit volume: $\vec{f} = -\vec{\nabla} \cdot \vec{T}$





represented by a diagonal matrix

$$\overleftrightarrow{T} = \begin{pmatrix} P & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{pmatrix}$$

every direction). Force per unit volume is

$$\vec{f} = -\overrightarrow{\nabla}\cdot\overrightarrow{T} = -\frac{\partial P}{\partial x}\hat{x} - \frac{\partial P}{\partial y}\hat{y} - \frac{\partial P}{\partial z}\hat{z} = -$$

In the presence of viscosity, $\overleftarrow{T} = P\overrightarrow{G} + \overleftarrow{\tau}$, $\overleftarrow{\tau}$ is called the viscous stress tensor.

Viscous force acting on a small ares is $d\overrightarrow{F}_{vis} = \overleftrightarrow{\tau} \cdot d\overrightarrow{A}$ Viscous force per unit volume is $\vec{f}_{vis} = -\vec{\nabla}\cdot\vec{\tau}$

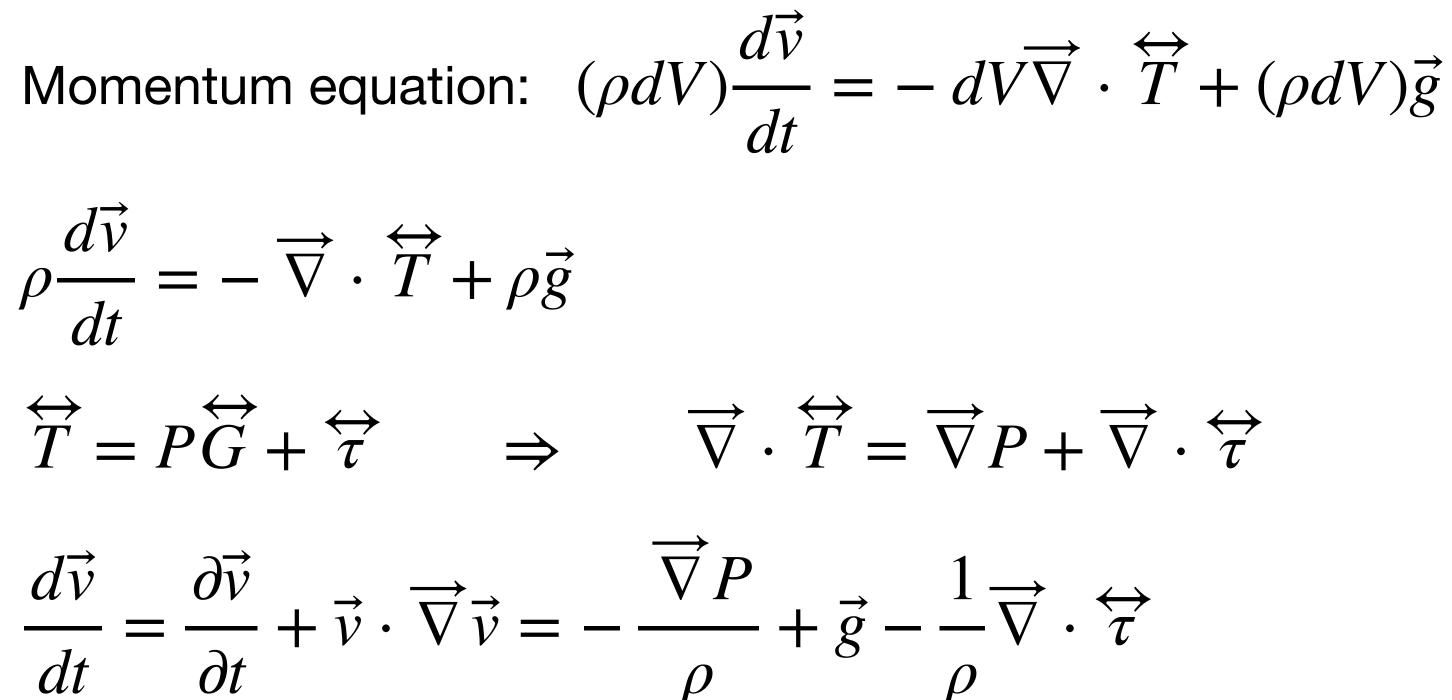
represented by an identity matrix in Cartesian coordinates. In Cartesian coordinates, \widetilde{T} is

Force acting on a small area is $d\vec{F} = \vec{T} \cdot d\vec{A} = Pd\vec{A}$. Force is isotropic (same magnitude in

 $\overrightarrow{\nabla} P$

 $d\vec{F} = Pd\vec{A}$

Momentum Equation with Viscosity



Need an expression for $\overleftarrow{\tau}$ that depends on the velocity field \vec{v} .

 $\overleftarrow{\tau} \neq 0$ only for non-uniform \vec{v} , but $\overleftarrow{\tau} = 0$ if the fluid is rigidly rotating.

Velocity Gradient Tensor

The velocity gradient tensor $\overrightarrow{\nabla} \overrightarrow{v}$ can be

 $\overleftarrow{\tau}$ is symmetric, but $\overrightarrow{\nabla} \vec{v}$ is not. Cannot express $\overleftarrow{\tau}$ in terms of $\overrightarrow{\nabla} \vec{v}$ directly. Decompose $\overrightarrow{\nabla} \overrightarrow{v}$ into 3 components: (Expansion: $\theta = Tr(\overrightarrow{\nabla} \overrightarrow{v}) = \overrightarrow{\nabla} \cdot \overrightarrow{v}$ Anti-symmetric part of $\vec{\nabla} \vec{v}$: $r_{ij} = \frac{1}{2}$ Symmetric trace-free part of $\overrightarrow{\nabla} \overrightarrow{v} : \sigma_{ii} =$

e represented by a matrix:
$$\overrightarrow{\nabla} \overrightarrow{v} =$$

$$\vec{\nabla}\vec{v})_{ij} = \frac{\partial v_j}{\partial x_i} = \frac{1}{3}\theta\delta_{ij} + r_{ij} + \sigma_{ij}$$

$$\left(\frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j}\right)$$
$$= \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j}\right) - \frac{1}{3} \theta \delta_{ij}$$

$$= \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_y}{\partial x} & \frac{\partial v_z}{\partial x} \\ \frac{\partial v_x}{\partial y} & \frac{\partial v_y}{\partial y} & \frac{\partial v_z}{\partial y} \\ \frac{\partial v_x}{\partial z} & \frac{\partial v_y}{\partial z} & \frac{\partial v_z}{\partial z} \end{pmatrix}$$

Physical Meaning of θ

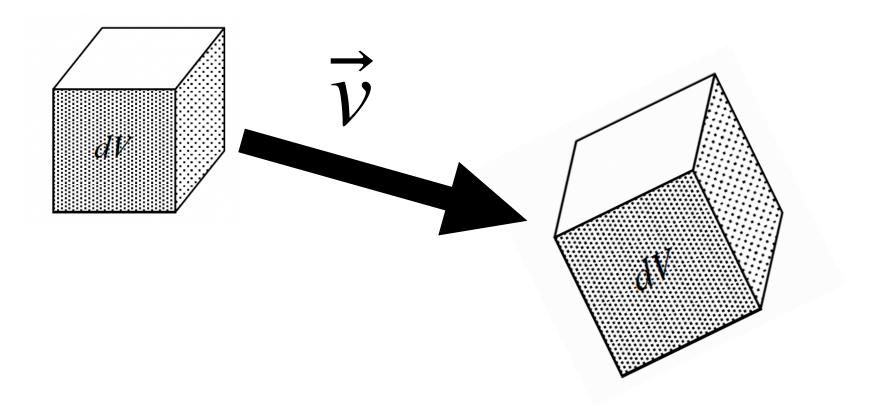
Consider a small fluid element occupying a small volume ΔV and mass $\Delta m = \rho \Delta V$.

Moving with the mass, we have

$$0 = \frac{d}{dt}(\rho\Delta V) = \Delta V \frac{d\rho}{dt} + \rho \frac{d\Delta V}{dt}$$

Continuity equation: $\frac{d\rho}{dt} = -\rho \overrightarrow{\nabla} \cdot \overrightarrow{v} = -\rho\theta$
 $-\rho\theta\Delta V + \rho \frac{d\Delta V}{dt} = 0$
 $\theta = \frac{1}{\Delta V} \frac{d\Delta V}{dt}$

 θ is the fractional rate of increase of fluid element's volume.



$$r_{xx} = r_{yy} = r_{zz} = 0$$
, $r_{xy} = -r_{yx} = \frac{1}{2} \left(\frac{\partial v_y}{\partial x} \right)$

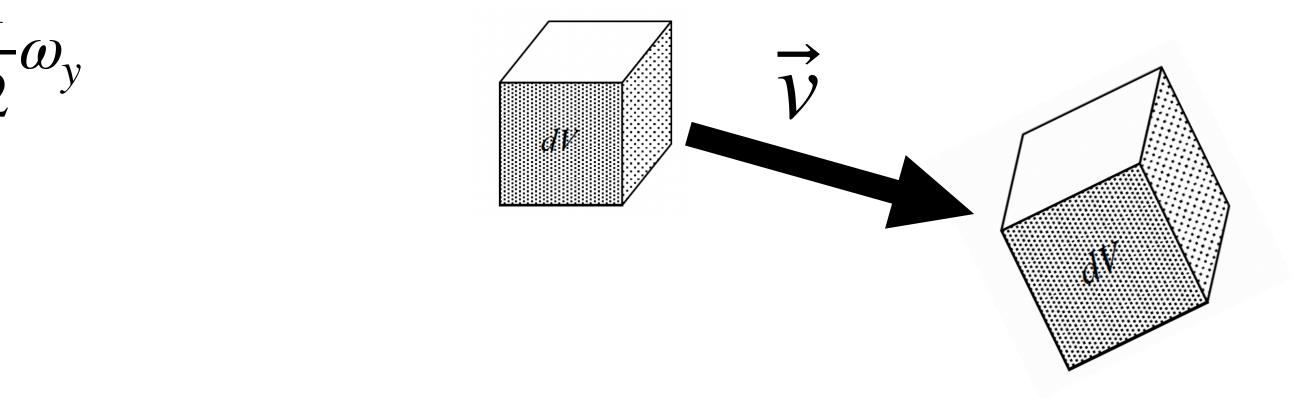
Similarly, $r_{yz} = -r_{zy} = \frac{1}{2}\omega_x$, $r_{zx} = -r_{xz} = \frac{1}{2}\omega_y$

$$\dot{\vec{r}} = \frac{1}{2} \begin{pmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{pmatrix}$$

 \overrightarrow{r} describes the local rotation of fluid. $\overleftrightarrow{\tau}$ is symmetric but \overleftrightarrow{r} is anti-symmetric. $\overleftrightarrow{\tau}$ cannot depend on \overleftrightarrow{r} .

 \leftrightarrow . $\overleftarrow{\sigma}$ is symmetric and trace-free. It describes the shear motion of fluid.

 $-\frac{\partial v_x}{\partial y}\right) = \frac{1}{2}(\vec{\nabla} \times \vec{v})_z = \frac{1}{2}\omega_z$



Bulk and Shear Viscosity

Simple model of viscosity: $\overleftarrow{\tau} = -\zeta \theta$ $\tau_{ii} = -\zeta \theta \delta_{ii} - 2\mu \sigma_{ii}$ ζ : coefficient of bulk viscosity, μ : coefficient of shear viscosity. Bulk viscosity resists the fluid's expansion and contraction. Shear viscosity resists the fluid's shear motion. In general, bulk viscosity << shear viscosity. Another quantity is kinematic viscosit

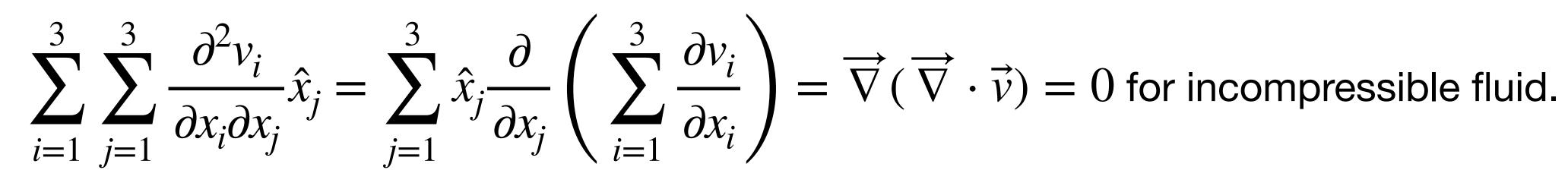
$$\partial \overleftrightarrow{G} - 2\mu \overleftrightarrow{\sigma}$$
 or in component form:

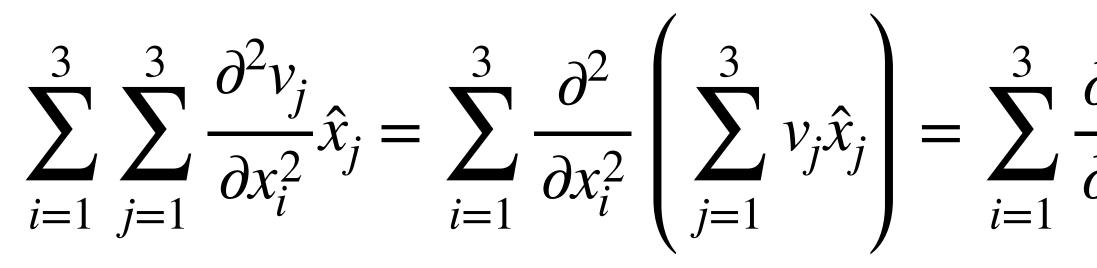
ty
$$\nu = \mu / \rho$$

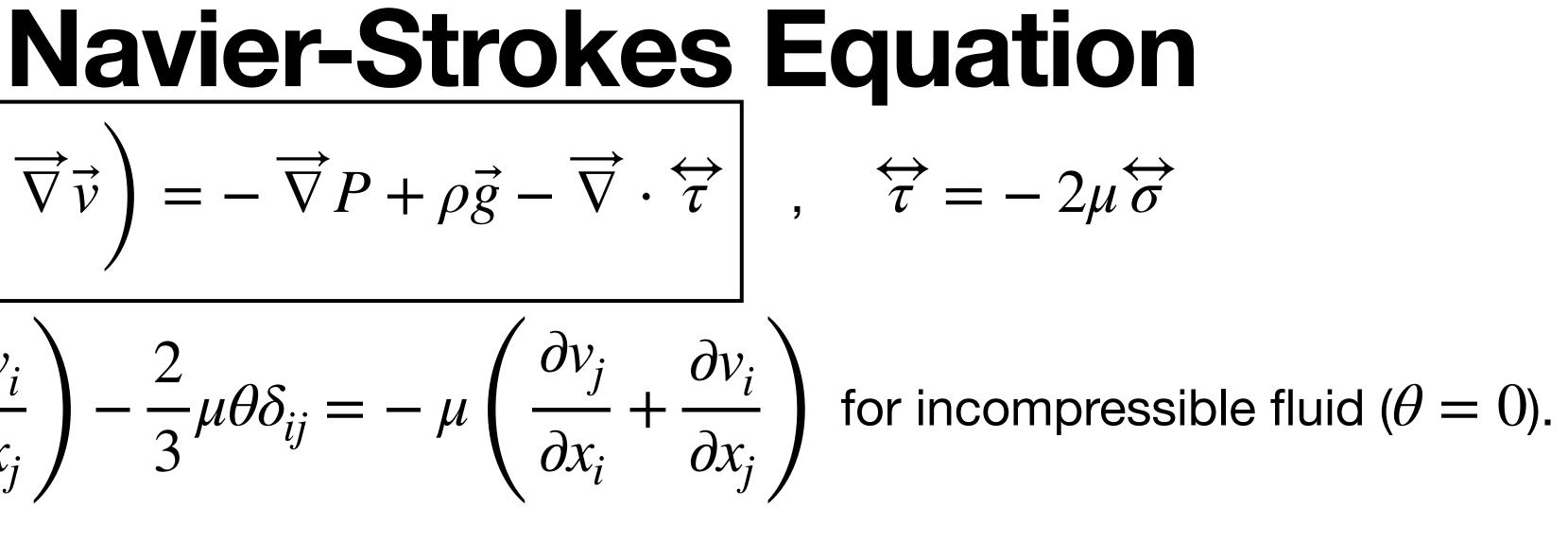
 $\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} \right) = -\vec{\nabla} P + \rho \vec{g} - \vec{\nabla} \cdot \overleftarrow{\tau} \quad , \quad \overleftarrow{\tau} = -2\mu \overleftarrow{\sigma}$

$$\tau_{ij} = -\mu \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right) - \frac{2}{3}\mu \theta \delta_{ij} = -\mu \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_j}{\partial x_j} \right)$$

$$\overrightarrow{\nabla} \cdot \overleftarrow{\tau} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{3} \tau_{ij} \widehat{x}_j \right) = -\mu \sum_{i=1}^{3} \sum_{j=1}^{3} \left(\frac{\partial^2 v_i}{\partial x_i \partial x_j} + \frac{\partial^2 v_j}{\partial x_i^2} \right) \widehat{x}_j$$







$$\frac{\partial^2 \vec{v}}{\partial x_i^2} = \nabla^2 \vec{v}$$

Navier-Strokes Equation for Incompressible Fluid

For incompressible fluid, $\overrightarrow{\nabla} \cdot \overleftarrow{\tau} = -\mu \nabla^2 \vec{v}$.

$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} \right) = -\vec{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$
$$Or$$
$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{\vec{\nabla} P}{\rho} + \vec{g} + \nu \nabla^2 \vec{v}$$

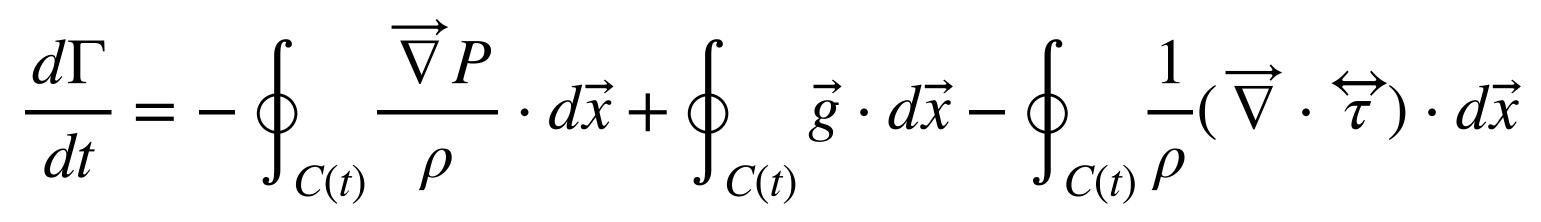
 $\nu = \mu / \rho$: kinematic viscosity

Evolution of Circulation

Circulation:
$$\Gamma(t) = \oint_{C(t)} \vec{v} \cdot d\vec{x} = \int_{S(t)} \vec{\omega}$$

Suppose the loop C(t) follows the fluid's motion. Then

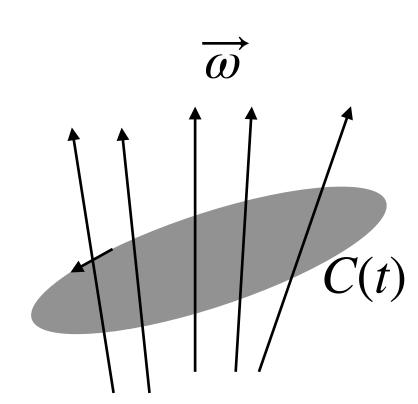
 $\frac{d\Gamma}{dt} = \oint_{C(t)} \frac{d}{dt} (\vec{v} \cdot d\vec{x}) = \oint_{C(t)} \frac{d\vec{v}}{dt} \cdot d\vec{x} +$ $\oint_{C(t)} \vec{v} \cdot d\left(\frac{d\vec{x}}{dt}\right) = \oint_{C(t)} \vec{v} \cdot d\vec{v} = \frac{1}{2} \oint_{C(t)} dv^2 = 0$ Navier-Stokes equation: $\frac{d\vec{v}}{dt} = -\frac{\vec{\nabla}P}{c} + c$



 $\cdot d\vec{S}$

$$-\oint_{C(t)} \vec{v} \cdot d\left(\frac{d\vec{x}}{dt}\right)$$

$$\vec{g} - \frac{1}{\rho} \overrightarrow{\nabla} \cdot \overleftarrow{\tau}$$



Kelvin's Circulation Theorem

$$\begin{split} \oint_{C(t)} \vec{g} \cdot d\vec{x} &= \int_{S(t)} (\vec{\nabla} \times \vec{g}) \cdot d\vec{S} = -\int_{S(t)} (\vec{\nabla} \times \vec{\nabla} U) \cdot d\vec{S} = 0 \\ - \oint_{C(t)} \frac{\vec{\nabla} P}{\rho} \cdot d\vec{x} &= -\int_{S(t)} \left(\vec{\nabla} \times \frac{\vec{\nabla} P}{\rho} \right) \cdot d\vec{S} = \int_{S(t)} \frac{\vec{\nabla} \rho \times \vec{\nabla} P}{\rho^2} \cdot d\vec{S} \\ \frac{d\Gamma}{dt} &= \int_{S(t)} \frac{\vec{\nabla} \rho \times \vec{\nabla} P}{\rho^2} \cdot d\vec{S} - \oint_{C(t)} \frac{1}{\rho} (\vec{\nabla} \cdot \vec{\tau}) \cdot d\vec{x} \end{split}$$

If the fluid is barotropic: $P = P(\rho), \ \overrightarrow{\nabla} P =$

$$\frac{d\Gamma}{dt} = 0$$
 for barotropic, in

$$\frac{dP}{d\rho} \overrightarrow{\nabla} \rho \text{ and so } \overrightarrow{\nabla} \rho \times \overrightarrow{\nabla} P = 0.$$

nviscid flow.

Water flowing through Cylindrical Pipe I Continuity equation: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$

In cylindrical coordinates,

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho v_\theta)}{\partial \theta} + \frac{\partial (\rho v_z)}{\partial z} = 0$$

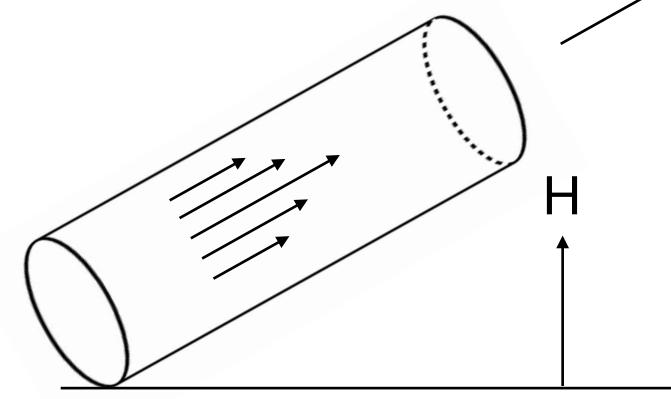
Looking for a steady solution ($\partial \rho / \partial t = 0$), axisymmetric and $v_r = v_{\theta} = 0$

$$\Rightarrow \frac{\partial v_z}{\partial z} = 0 , \Rightarrow v_z = v_z(r)$$

Navier-Stokes equation:

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}\right) = -\vec{\nabla}P + \rho \vec{g} + \mu \nabla$$

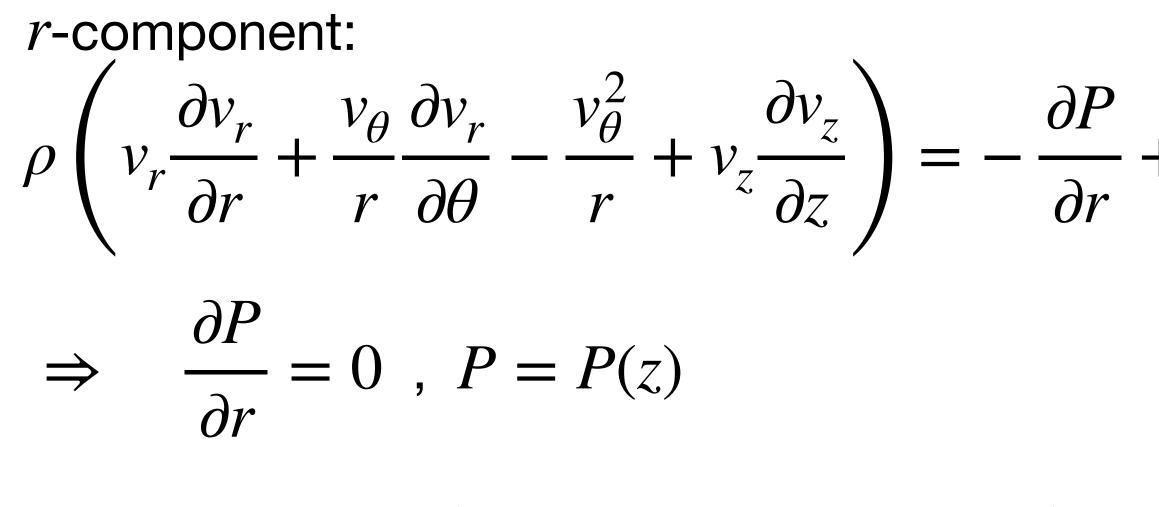
Set $\partial \vec{v} / \partial t = 0$ and write $P = \rho g H + P_1$, where H is height from a reference point.



Water flowing through Cylindrical Pipe II $P = \rho g H + P_1 \implies \overrightarrow{\nabla} P = \rho g \hat{H} + \overrightarrow{\nabla} P_1 = -\rho \vec{g} + \overrightarrow{\nabla} P_1$

Navier-Stokes equation becomes $\rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} P_1 + \mu \nabla^2 \vec{v}$

(pressure - $\rho g H$).

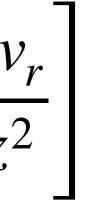


z-component: $\rho\left(v_r\frac{\partial v_z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_z\frac{\partial v_z}{\partial z}\right) =$

Gravity is eliminated by the ho gH term. In the following, I will drop the subscript 1. So P means P_1

$$+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rv_r)}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2 v_r}{\partial \theta^2}-\frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta}+\frac{\partial^2 v_r}{\partial z^2}\right]$$

$$= -\frac{\partial P}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$



$$\frac{dP}{dz} = \frac{\mu}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right)$$

LHS is function of *z*, RHS is function of *r*.

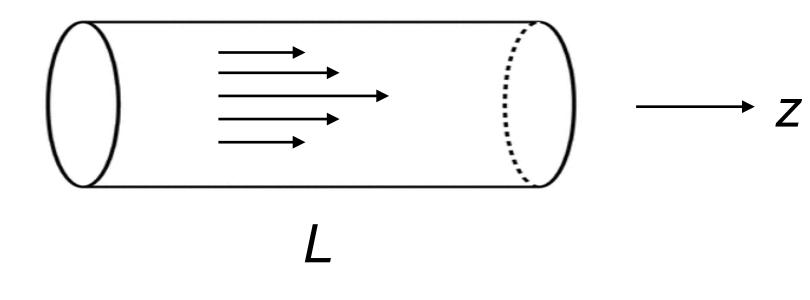
$$\Rightarrow \frac{dP}{dz} = \frac{\mu}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) = k = \text{constant}$$

Let L be the length of the pipe. Integrating dP/dz = k from z = 0 to z = L gives

two ends of the pipe.

$$\frac{\mu}{r}\frac{d}{dr}\left(r\frac{dv_z}{dr}\right) = -\frac{\Delta P}{L} \implies r\frac{dv_z}{dr} = -\frac{\Delta P}{dr}$$
$$v_z = \int \left(-\frac{\Delta P}{2\mu L}r + \frac{C_1}{r}\right) dr = -\frac{\Delta P}{4\mu L}r^2 + \frac{C_1}{4\mu L}r^2$$

ugh Cylindrical Pipe III



- $\Delta P = kL$ or $k = -\Delta P/L$, where $\Delta P = P(0) P(L)$ is the pressure difference between the

 $\frac{\Delta P}{\mu L} \int r dr = -\frac{\Delta P}{2\mu L} r^2 + C_1$

 $C_1 \ln r + C_2$

Water flowing throw

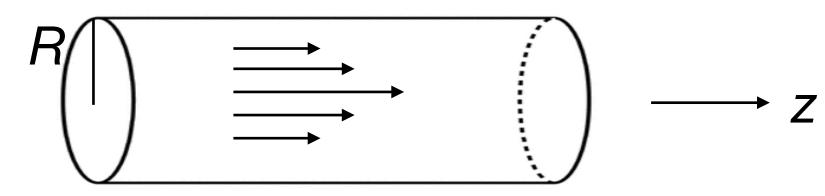
$$v_z(r) = -\frac{\Delta P}{4\mu L}r^2 + C_1 \ln r + C_2$$

Boundary conditions of v_7 : (1) finite at $r = 0 \Rightarrow C_1 = 0$, (2) $v_z = 0$ at the wall at $r = R \Rightarrow C_2 = \frac{\Delta R}{A_{11}}$

$$v_z(r) = \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right) , \quad v_z(0) = \frac{A}{4\mu L} V_z(r) = \frac{2}{4\mu L} V_z(r) + \frac{2$$

Average flow velocity is $\langle v_z \rangle = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right) r dr dt$ $\langle v_z \rangle = \frac{\Delta P R^2}{8\mu L} = \frac{1}{2} v_z(0)$

ugh Cylindrical Pipe IV



$$\frac{P}{L}R^2$$

 $\frac{\Delta P}{4\mu L}R^2$

$$\theta = \frac{\Delta P}{2\mu L} \int_0^R \left(r - \frac{r^3}{R^2} \right) dr$$

Water flowing through Cylindrical Pipe V

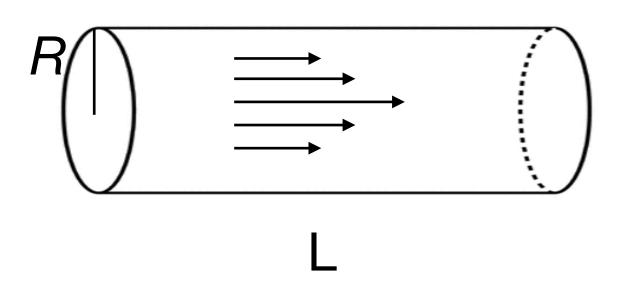
$$v_z(r) = \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right)$$

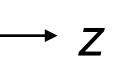
$$\langle v_z \rangle = \frac{\Delta P}{8\mu L} R^2$$

Flow rate:

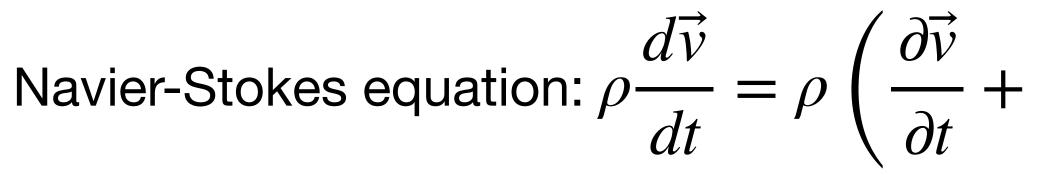
$$Q = \pi R^2 \langle v_z \rangle = \frac{\pi \Delta P R^4}{8\mu L}$$

This is called the Hagen-Poiseuille equation.





Reynolds Number and Turbulence



inertia	$\rho d\vec{v}/dt $	$\rho u/T$	<i>ρ</i> и/(
viscosity	$\frac{1}{\mu} \nabla^2 \vec{v} $	$\sim \mu u/L^2$	$\sim -\mu u$
Reynolds n	umber: Re =	<u>ρuL</u> μ	

L: characteristic length scale, u: characteristic speed. T = L/u: characteristic time.

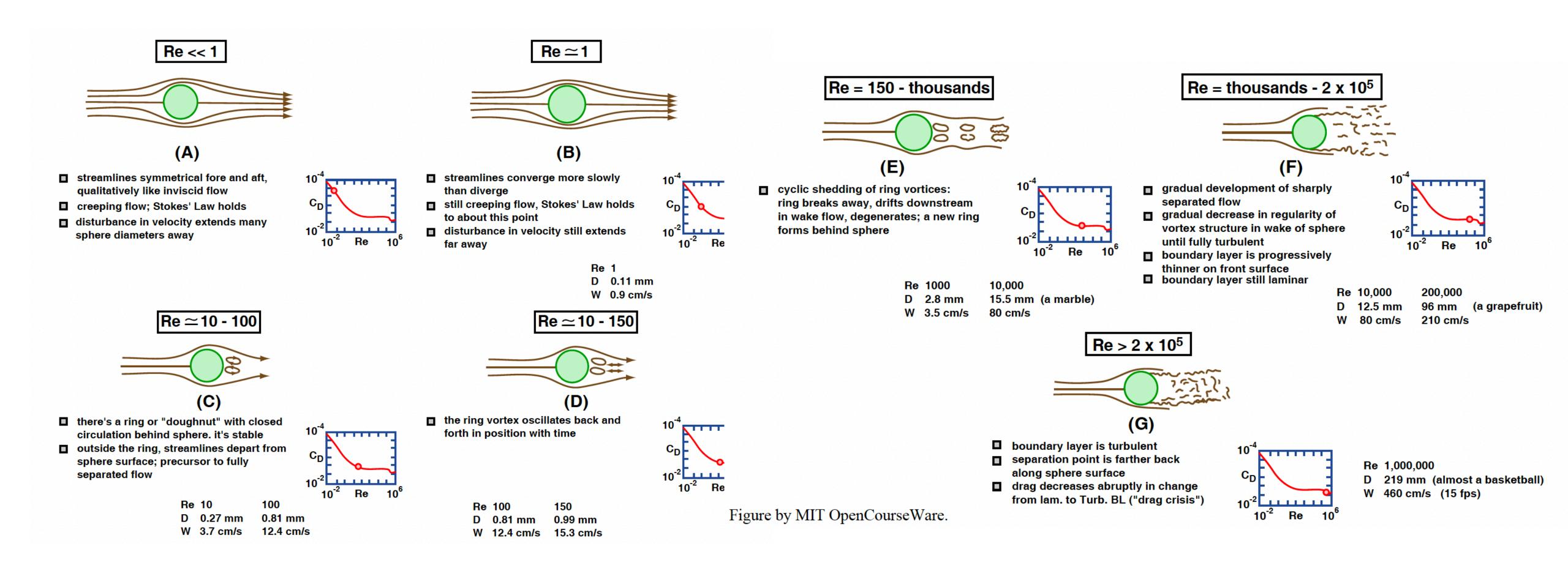
Low Reynolds number \rightarrow flow dominated by viscosity \rightarrow laminar

High Reynolds number \rightarrow flow dominated by inertia \rightarrow turbulence

Experiments show that pipe flow only remains laminar up to Re $\sim 10^3 - 10^5$, depending on the smoothness of pipe's entrance and roughness of its walls.

$$\vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$
$$\frac{(L/u)}{/L^2} = \frac{\rho u L}{\mu}$$

Flow around Sphere with Different Re's



Credit: <u>MIT OpenCourseWare</u>

Darcy's Friction Factor and Head Loss

Hagen-Poiseuille equation: $\Delta P = \frac{8\mu L U_{avg}}{R^2} = \frac{32\mu L U_{avg}}{D^2}$

Here D = 2R is the pipe diameter, $U_{avg} = \langle v_z \rangle$ is the average flow velocity in the pipe.

In the absence of viscosity, Bernoulli's equation:

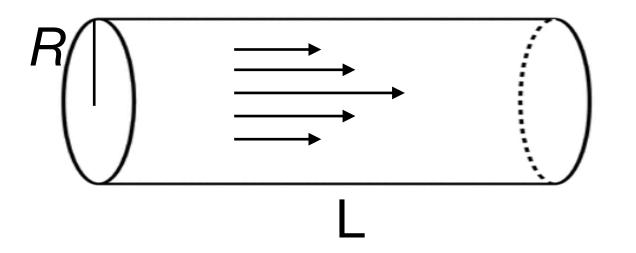
$$\frac{1}{2}\rho v_1^2 + P_1 + \rho g h_1 = \frac{1}{2}\rho v_2^2 + P_2 + \rho g h_2$$

For a horizontal and steady flow, $\Delta P = P_1 - P_2 = 0$.

In the presence of viscosity, $\Delta P \propto L$. Define a dimensionless parameter called *Darcy's friction factor*:

$$\frac{\Delta P}{L} = f \frac{\frac{1}{2} \rho U_{avg}^2}{D} \quad \text{or} \quad f = \frac{\Delta P}{\frac{1}{2} \rho U_{avg}^2} \left(\frac{D}{L}\right)$$

Head loss is defined as $h_f \equiv \frac{\Delta P}{\rho g} \quad \Rightarrow \quad \left[h_f = f \frac{L U_{avg}^2}{2Dg}\right]$



(Darcy-Weisbach equation)

Darcy's Friction Factor and Head Loss (cont)

For pipes with non-circular cross section, *f* and by the *hydraulic diameter* $D_h \equiv \frac{4A}{P}$.

A: cross-sectional area of the pipe, P: perimeter of the pipe.

For a duct with rectangular cross section with h

For laminar flow in a cylindrical pipe, Hagen-Poiseuille equation gives

$$f = \frac{64\mu}{\rho U_{avg}D} = \frac{64}{\text{Re}}$$

where the Reynolds number is calculated by $R\epsilon$

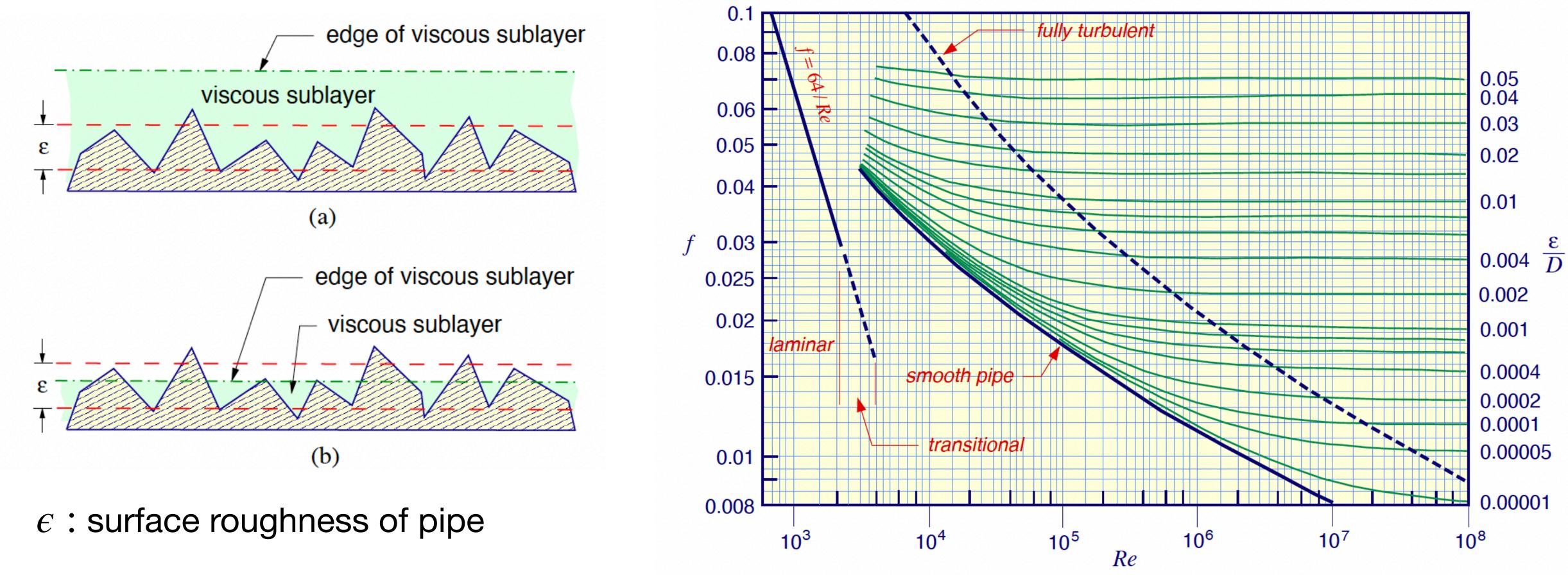
In the presence of turbulence, f also depends on the surface roughness of the pipe ϵ .

For pipes with non-circular cross section, f and h_f are defined by replacing the pipe diameter D

height *h* and width *w*,
$$D_h = \frac{4wh}{2(w+h)}$$

$$e = \frac{\rho U_{avg} D}{\mu}$$

Moody Diagram



Credit: J.M. McDonough, Lectures In Elementary Fluid Dynamics: Physics, Mathematics and **Applications**

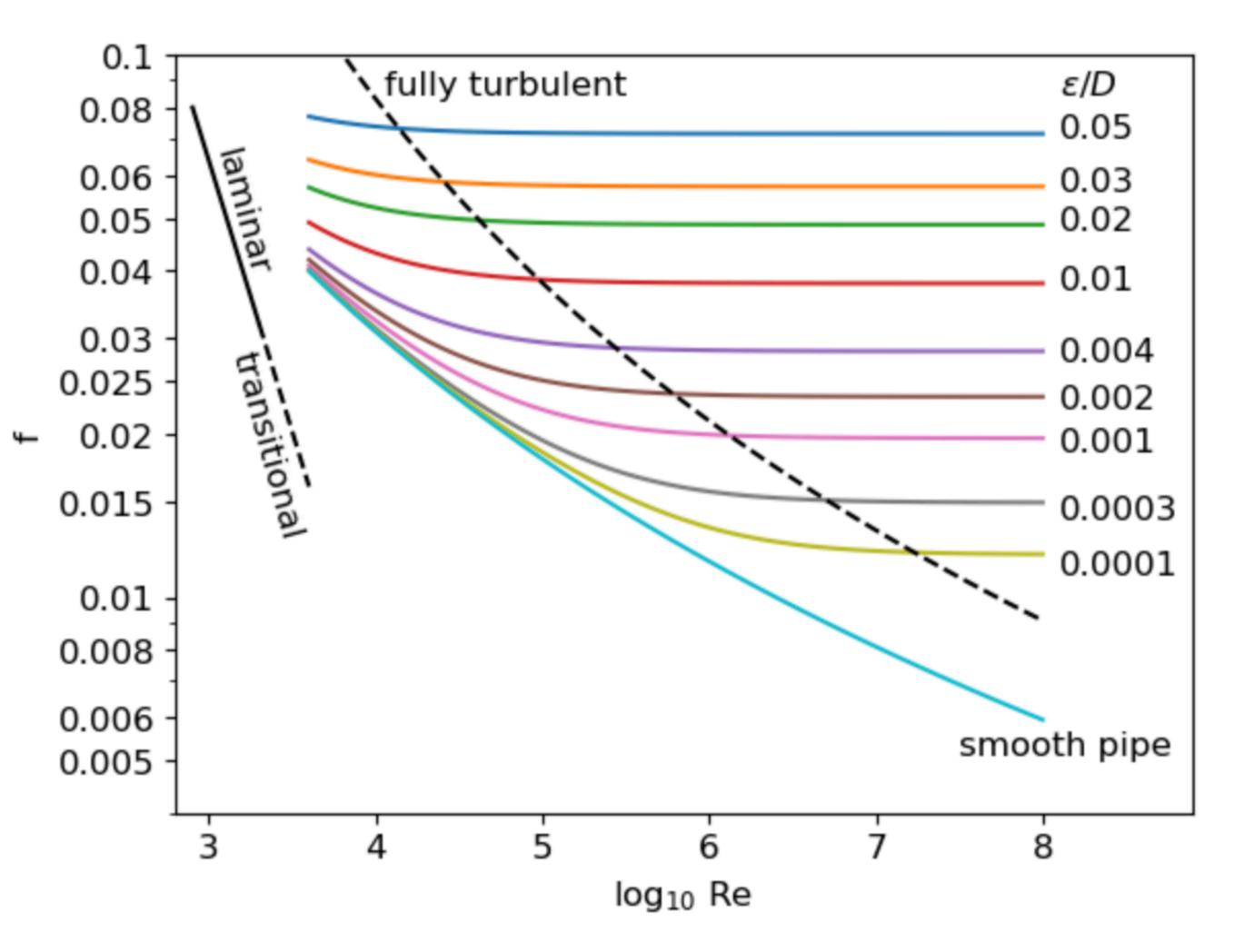
Colebrook Formula

For 4×10^3 < Re < 10^8 , Darcy's friction factor may be computed by the Colebrook formula

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$

f needs to be solved iteratively.

The calculated values of *f* differ from experimental results < 15%.



Moody diagram calculated by the Colebrook formula

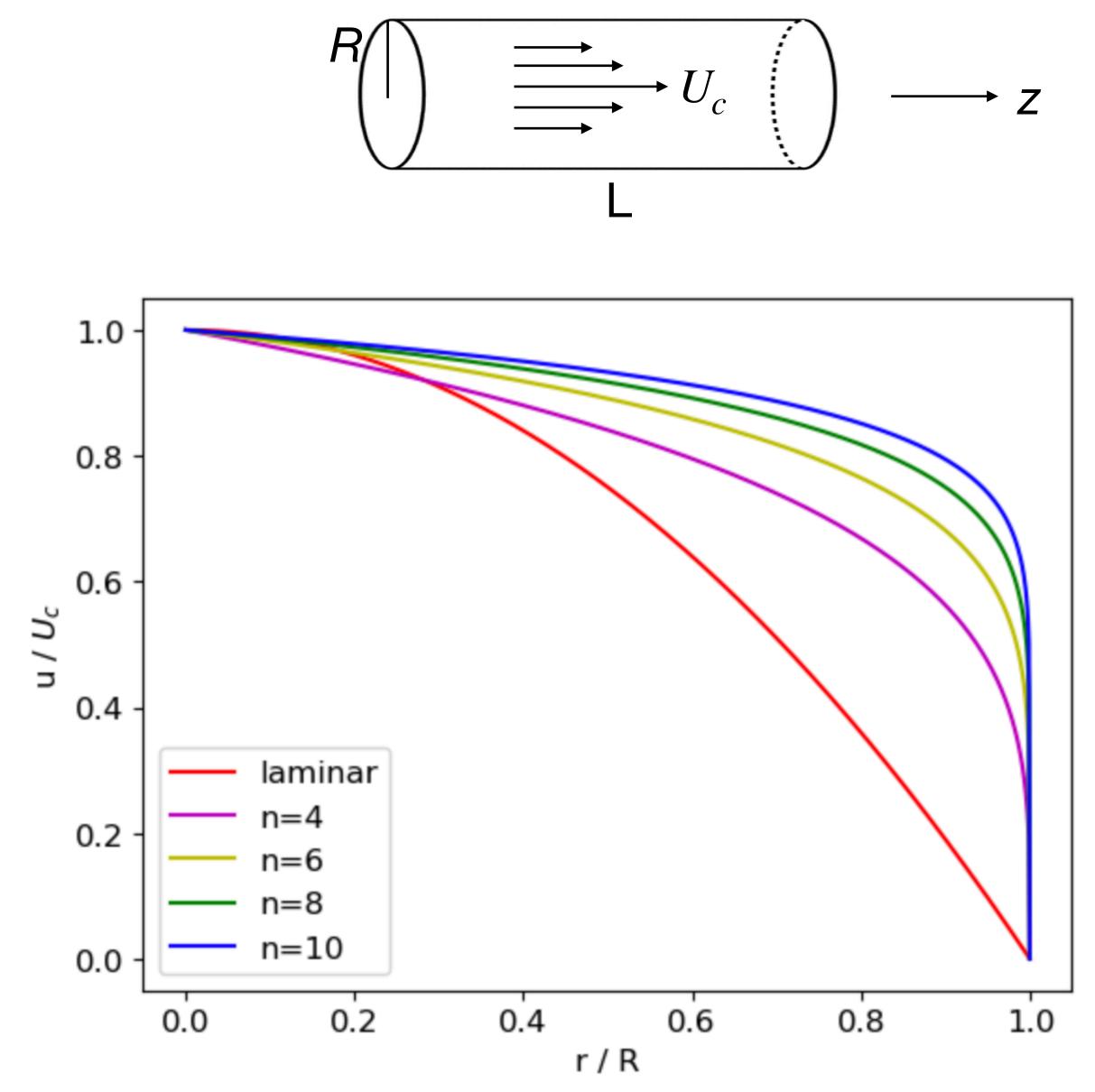
Velocity Profile

Laminar flow:
$$u = U_c \left(1 - \frac{r^2}{R^2}\right)$$

Turbulent flow: $u = U_c \left(1 - \frac{r}{R}\right)^{1/n}$

$$n = 6$$
 when Re $\approx 2 \times 10^4$
 $n = 10$ when Re $\approx 3 \times 10^6$

At high Re, velocity profile is relatively flat, but decreases rapidly to 0 near the wall.



Practical Head Loss Equation

Bernoulli's equation $\frac{P_1}{\rho} + \frac{1}{2}v_1^2 + gz_1 = \frac{P_2}{\rho}$ replaced by:

$$\frac{P_1}{\rho g} + \alpha_1 \frac{U_1^2}{2g} + z_1 + h_{pump} = \frac{P_2}{\rho g} + \alpha_2 \frac{U_2^2}{2g} + z_2 + h_f + h_{turbine}$$

 U_1, U_2 : average flow speeds, α_1, α_2 : correction factor for KE.

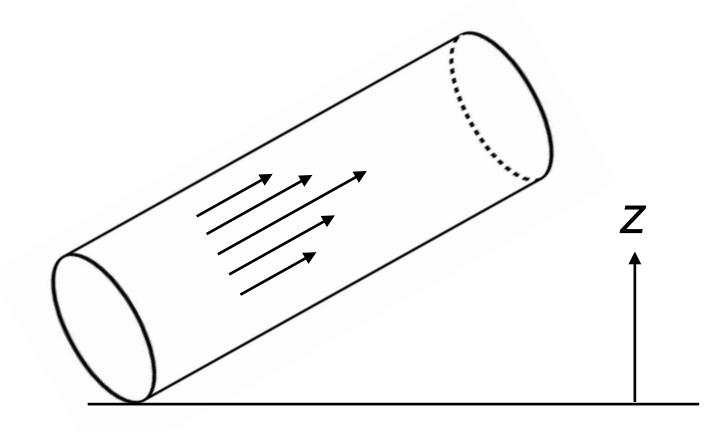
 $\alpha = 2$ for laminar flows, $\alpha \approx 1$ for turbulent flows.

 h_f : head loss caused by viscosity,

 h_{pump} : head gain by a pump (if present),

 $h_{turbine}$: head loss by driving a turbine (if present).

$$+\frac{1}{2}v_2^2 + gz_2$$
 is



Oil, with $\rho = 900 \text{ kg/m}^3$, and $\nu = 10^{-5} \text{ m}^2/\text{s}$, flows at $Q = 0.2 \text{ m}^3/\text{s}$ through 500 m of 0.2m-diameter cast iron pipe (roughness $\epsilon = 0.26$ mm). Determine the head loss and pressure drop if the pipe slopes down at 10° .

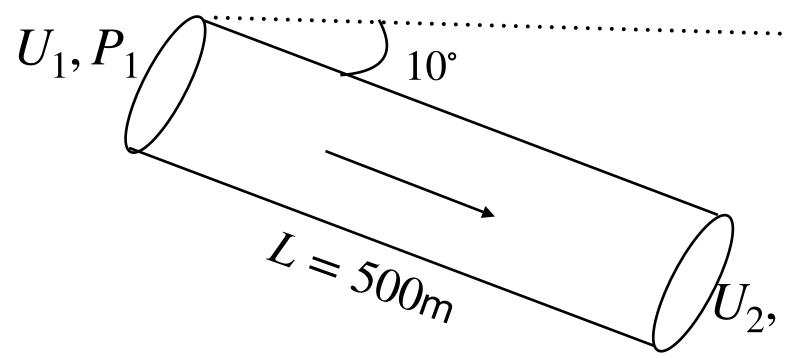
Flow speeds
$$U_1 = U_2 = \frac{Q}{\pi D^2/4} = 6.37$$
 m/s
Re $= \frac{\rho UD}{\mu} = \frac{UD}{\nu} = 1.27 \times 10^5$

The flow is turbulent. Using Colebrook formula with $\epsilon/D = 0.26/200$ and the above Re, I get f = 0.0227. The head loss is given by the Darcy-Weisbach equation:

$$h_f = f \frac{LU^2}{2Dg} = 117 \text{m. } \alpha \approx 1 \text{ for turbulent flows. } \frac{P_1}{\rho g} + \frac{U_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{U_2^2}{2g} + z_2 + h_f$$
$$\frac{P_1 - P_2}{\rho g} = h_f - (z_1 - z_2) = 117 \text{m} - (500 \text{m}) \sin 10^\circ = 30 \text{m.}$$

Pressure drop $\Delta P = \rho g(30m) = 2.65 \times 10^5$ Pa.

Example 1



Example 2

The pipe in the previous example is connected to a horizontal pipe of length 100 m. The pipe is also made of cast iron but with diameter D = 0.25m. Suppose the flow rate remains the same (Q = 0.2m³/s). Calculate the head loss and pressure difference in the second pipe.

$$U_{3} = \frac{Q}{\pi D^{2}/4} = 4.07 \text{ m/s}$$

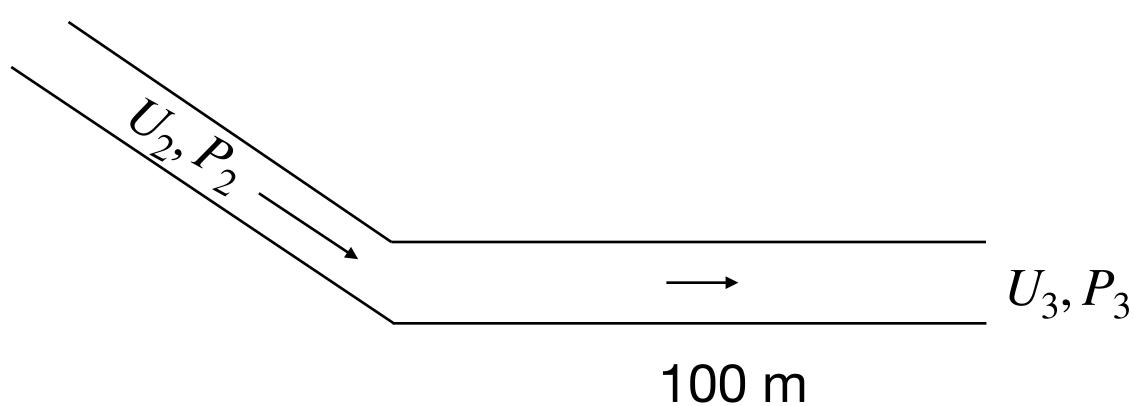
Re = $\frac{U_{3}D}{\nu} = 1.02 \times 10^{5}$, $\epsilon/D = 0.26/250$.

The Colebrook formula gives f = 0.0223.

Head loss:
$$h_f = f \frac{LU_3^2}{2Dg} = 7.54$$
 m.

Horizontal pipe $\Rightarrow z_2 = z_3$, $\frac{P_2}{\rho g} + \frac{U_2^2}{2g} = \frac{P_3}{\rho g} + \frac{U_2}{2g}$

$$\Rightarrow P_2 - P_3 = \rho g h_f + \rho (U_3^2 - U_2^2)/2 = 5.6 \times 10^4 \,\mathrm{F}$$



$$\frac{V_3^2}{g} + h_f$$
, $U_2 = 6.37$ m/s from previous calculation.

Pa