Physics 525 Survey of Fundamental Device Physics

Lecture 1. Eugene V Colla

Unit 6. Magnetic fields etc. Maxwell Equations

Agenda

1. From Coulomb, Gauss, Biot and Savart, Ampere, Faraday Laws to Maxwell Equations
2. Lorentz Forces and Charged Particles Accelerating
3. Electromagnetic Spectrum and Waves propagations

Basics of Electricity and Magnetism

$$
\vec{F}_{21}=\frac{1}{4 \pi \varepsilon_{0}} q_{1} q_{2} \frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}}
$$

Coulomb's torsion balance (1785)

Coulomb's Law

$$
\varepsilon_{0}=8.85410^{-12} \mathrm{~F} / \mathrm{m}
$$

Charles Augustin de Coulomb
1736-1806

Basics of Electricity and Magnetism

$$
\vec{F}_{21}=\frac{1}{4 \pi \varepsilon_{0}} q_{1} q_{2} \frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}} \quad \text { and } \quad \vec{F}_{21}=-\vec{F}_{12} \quad 3^{\text {rd }} \text { Newton Law }
$$

Electrical Field definition:

$$
\vec{E}_{0}=\lim _{q \rightarrow 0} \frac{\vec{F}}{q} \quad \longrightarrow \quad \vec{E}_{0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{3}} \hat{r}
$$

Or for continuous distribution with charge density

Due to superposition principle the field created by point charges:
$\vec{E}_{0}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{i=N} q_{i} \frac{\vec{r}-\vec{r}_{i}}{\left|\vec{r}-\vec{r}_{i}\right|^{3}} \quad \vec{E}_{0}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\left(\vec{r}-\vec{r}^{\prime}\right)_{i}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \rho\left(r^{\prime}\right) d \tau$

Basics of Electricity and Magnetism.

Example: Electrical field generated by the dipole

\vec{E}_{+}	
$\vec{E} \longleftarrow$	Y field components generated by negative and positive charges will compensate each other.
$\vec{E}_{-}(0, y)$	$\|\vec{E}\|=\left\|\vec{E}_{-}\right\|+\left\|\vec{E}_{+}\right\|=2 \cdot \frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{1}{y^{2}+\left(\frac{d}{2}\right)^{2}} \cdot \cos \Theta \quad \cos \Theta=\frac{d}{2 \sqrt{y^{2}+\left(\frac{d}{2}\right)^{2}}}$

Finally:

$$
|\vec{E}|=\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{d}{\left(y^{2}+\left(\frac{d}{2}\right)^{2}\right)^{\frac{3}{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{p}{\left(y^{2}+\left(\frac{d}{2}\right)^{2}\right)^{\frac{3}{2}}}
$$

Where p is dipole moment $p=q d$

In the case if $y \gg d \quad|\vec{E}| \simeq \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{p}{y^{3}}$

Basics of Electricity and Magnetism

Electrical field can be presented as the gradient on scalar electrical potential V_{0}

$$
\vec{E}_{0}=-\operatorname{grad}\left(V_{0}\right)=-\nabla V_{0}
$$

Gauss Law

Introducing the electric flux as:

Johann Carl Friedrich Gauss
1777-1855

Basics of Electricity and Magnetism

$$
\Phi(E)=\int_{A} \vec{E}_{0} \bullet \vec{n} \times d A=\frac{Q}{\varepsilon_{0}}
$$

Introducing the electrical inductance $\vec{D}=\varepsilon_{0} \vec{E}$ the equation could rewritten as:

$$
\Phi(E)=\int_{A} \vec{D}_{0} \bullet \vec{n} \times d A=Q=\int_{v} \rho(v) d v
$$

Where $\rho(v)$ is the volume distribution of the charge. Now we applying the divergence theorem $\int_{A} \vec{D} \bullet d \vec{A}=\int_{v} \nabla \cdot D d v \quad(d \vec{A}=\vec{n} \times d A)$

Finally, we will have the differential form of Gauss law ($1^{\text {st }}$ Maxwell equation)

$$
\nabla D=\rho
$$

Basics of Electricity and Magnetism

For magnetic field induction B assuming that no magnetic charges exist* we can write the similar equation on the magnetic flux:

$$
\Phi(\vec{B})=\int_{A} \vec{B} \cdot d \vec{A}=0
$$

Here is the integral through close surface A and applying the divergence theorem we can get the second Maxwell equation in derivative form:

$$
\nabla \cdot \overrightarrow{\boldsymbol{B}}=\mathbf{0}
$$

*In 1931 Paul Dirac (P.A.M. Dirac, Proc. Roy. Soc. A 133, 60) did show that magnetic charges (monopole) could exist in the nature but up to now there is no experimental confirmation of this theory.

Basics of Electricity and Magnetism

Jean-Baptiste Biot
1774-1862

Biot and Savart law
$d \overrightarrow{\boldsymbol{B}}=\frac{\mu_{o}}{4 \pi} \frac{\boldsymbol{I} d \vec{l} \times \overrightarrow{\boldsymbol{r}}}{\boldsymbol{r}^{3}} \quad d \vec{l} \quad \stackrel{I}{\leftarrow} \quad \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m}$

Félix Savart 1791-1841
$d \overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}})$ - magnetic field contribution to $\vec{B}(r)$ created by element of the circuit $d \vec{l}$ carrying the current I

To calculate the net magnetic field generated by the whole wire with current I we need to take integral

$$
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{l} \frac{I d \vec{l} \times \vec{r}}{|\vec{r}|^{3}}
$$

Basics of Electricity and Magnetism

André-Marie Ampère 1775-1936

Ampere law

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} \sum_{i=1}^{i=N} I_{i} \quad \begin{aligned}
& I_{i}-\text { current } \\
& \text { components }
\end{aligned}
$$

Applying the Stok's theorem* and taking bin account that

$$
I=\int_{s} \vec{J} \cdot \vec{n} d S \quad(\vec{J} \text { current, } \vec{n}-\text { vector perpendicular to }
$$ the element of the surface $d S$) we get the fourth Maxwell equation in vacuum

$$
\begin{equation*}
\nabla \times \overrightarrow{\boldsymbol{B}}=\mu_{0} \vec{J} \tag{4}
\end{equation*}
$$

* Stok's theorem: $\quad \oint \vec{A} \bullet d \vec{l}=\int \nabla \vec{A} \bullet \vec{n} d S$

Basics of Electricity and Magnetism

Ampere law. Example: calculating the magnetic field created by solenoid.

Assuming that solenoid is long enough and the field outside is zero

$$
\left.\begin{array}{rll}
\oint \vec{B} \bullet d \vec{l}=0+0+0+\boldsymbol{L}=\mu_{0} N I & \\
1: \vec{B} \perp \vec{I} & \mathbf{2}: \vec{B}=0 & \mathbf{3}: \vec{B} \perp \vec{I}
\end{array} \quad B=\frac{\mu_{0} N I}{L}=\mu_{0} n I\right)
$$

Basics of Electricity and Magnetism

$$
\nabla \times \overrightarrow{\boldsymbol{B}}=\mu_{0} \vec{J}
$$

Maxwell found that this equation is not complete a does not account the current of charging the capacitor. This current can be calculated as:
$I=\frac{d Q}{d t}=\varepsilon_{0} A \frac{d E}{d t}$ where A is the area of the capacitor plate and $\varepsilon_{0}=8.85410^{-12} \mathrm{~F} / \mathrm{m}$

$$
\text { or current density } J=\varepsilon_{0} \frac{d E}{d t}
$$

Now the Ampere Law and fourth Maxwell equation can be modified as:

$$
\nabla \times \vec{B}=\mu_{0}\left(\vec{J}+\varepsilon_{0} \frac{d E}{d t}\right)
$$

Basics of Electricity and Magnetism

Michael Faraday 1791-1867
Faraday Law

$$
E m f=-\frac{d \Phi}{d t}
$$

$E m f$ - electromotive force and Φ is the magnetic flux

$$
d \Phi=d \vec{B} \cdot d \vec{s}
$$

$$
E m f=\oint \vec{E} \cdot d \vec{l}=-\int_{s} \frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} \cdot d \vec{s}
$$

now we can apply the Stok's theorem and will get the differential form of the Faraday law - third Maxwell equation

$$
\begin{equation*}
\nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial \boldsymbol{t}} \tag{3}
\end{equation*}
$$

Basics of Electricity and Magnetism

Faraday law. Example: transformer

Primary coil driven by the primary voltage V1 and according the Faraday Law

$$
V_{1}=-N_{1} A \frac{d \Phi_{1}}{d t}
$$

The same for the secondary coil

$$
V_{2}=-N_{2} A \frac{d \Phi_{2}}{d t}
$$

Because of the high μ value of the iron core the magnetic flux is almost totally contained in iron core and $\Phi 1 \cong \Phi 2$

This results in ration between V_{1} and V_{2} as

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

N_{1}, N_{2} numbers of turns of primary and secondary coils; A - cross sectional area Physics 525 iron core

Basics of Electricity and Magnetism

Maxwell equations describe the how the magnetic and electric field can be generated by charges and currents. J C Maxwell published them in 1861-1862.

James Clerk Maxwell 1831-1879

$$
\begin{equation*}
\nabla \vec{D}=\rho \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \vec{H}=J+\frac{\partial \vec{D}}{\partial t} \tag{4}
\end{equation*}
$$

Basics of Electricity and Magnetism

Maxwell equations. Electromagnetic waves.

$$
\begin{equation*}
\nabla \vec{D}=\rho \quad \text { (1) } \quad \nabla \overrightarrow{\boldsymbol{B}}=0 \quad \text { (2) } \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \text { (3) } \quad \nabla \times \vec{H}=J+\frac{\partial \vec{D}}{\partial t} \tag{3}
\end{equation*}
$$

In vacuum $\rho=\mathbf{0}$ (no electric charges) and $J=0$ (no current). Consider the plane wave propagating in Z direction. In this case $E_{y}=E_{z}=0$ and $H_{x}=H_{z}=0$

Basics of Electricity and Magnetism

Maxwell equations. Electromagnetic waves.
$\frac{\partial \boldsymbol{E}_{x}}{\partial z}=-\mu \frac{\partial \boldsymbol{H}_{y}}{\partial t} \quad \frac{\partial \boldsymbol{H}_{y}}{\partial z}=-\varepsilon \frac{\partial \boldsymbol{E}_{x}}{\partial t}$
Combining these leads to:

$$
\begin{gathered}
\frac{\partial^{2} E_{x}}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}} \quad \frac{\partial^{2} H_{z}}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} H_{z}}{\partial t^{2}} \\
\text { where } \quad v=\frac{1}{\sqrt{\mu \varepsilon}}
\end{gathered}
$$

Looking of the solutions was these equations in form:

$$
E_{x}=E_{x 0} \cos (\omega t-k x) \quad H_{y}=H_{y 0} \cos (\omega t-k x)
$$

From this solution we've got the parameters of the traveling wave:

Phase velocity

$$
v_{p}=v=\frac{1}{\sqrt{\mu \varepsilon}}
$$

Basics of Electricity and Magnetism

Maxwell equations. Electromagnetic waves.

$$
\begin{gathered}
\frac{\partial^{2} E_{x}}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}} \quad \frac{\partial^{2} H_{y}}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} H_{y}}{\partial t^{2}} \quad \begin{array}{l}
E_{x}=E_{x 0} \cos (\omega t-k x) \\
H_{y}=H_{y 0} \cos (\omega t-k x)
\end{array} \\
v_{p}=v=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \frac{1}{\sqrt{\mu_{r} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}} \quad \mu=\mu_{o} \mu_{r} \quad \varepsilon=\varepsilon_{o} \varepsilon_{r}
\end{gathered}
$$

μ_{0} is the free space permeability, ε_{0} is the free space permittivity

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{1}{\sqrt{\left(8.85 \bullet 10^{-12}\right)\left(4 \pi \bullet 10^{-7}\right)}} \cong 3.00 \bullet 10^{8} \mathrm{~m} / \mathrm{s}
$$

\mathcal{C} - speed of the light in free space

Creating a Static Magnetic Field using different Current Carrying Coils

a. Helmholtz coils b. Solenoids

Helmholtz coils

Hermann Ludwig
Ferdinand von
Helmholtz (1821-1894)

Magnetic field vector in a plane bisecting the current loops. (courtesy Wikipedia)

Helmholtz coils. Magnetic field along the axis.

Helmholtz coils. Magnetic field along the axis.

Finally:

Helmholtz coils. Distance between the coils

1. $a=2 R$

Helmholtz coils. Distance between the coils

1. $a=1.5 R$

Helmholtz coils. Distance between the coils

3. $a=R$

Helmholtz coils. Distance between the coils

4. $a=0.5 R$

Helmholtz coils. Distance between the coils

In the z range $-\mathrm{a} / 4 \div \mathrm{a} / 4$ the field uniformity is better than 0.5%

Solenoids. Magnetic field along the axis.

Magnetic field generated by length dz:

$$
\vec{B}=\left\{\frac{\mu_{0} n I d z}{2} \frac{a^{2}}{\left(z_{1}^{2}+a^{2}\right)^{\frac{3}{2}}}\right\} \bar{z}
$$

Here \mathbf{n} is number of turns per unit length and I - solenoid current

To calculate the magnetic field generated by the whole length of the solenoid we need to perform the integrating from \mathbf{z}_{1} to $\mathbf{z}_{\mathbf{2}}$

Solenoids. Magnetic field along the axis.

$\mathrm{z}_{1} \quad \overrightarrow{\mathrm{dz}} \quad \mathrm{z}_{2}$
Field from current loop

n-turns per unit length
I- solenoid current
$\begin{aligned} & \text { Making the changing } \\ & \text { variables } \mathrm{z}=\frac{\boldsymbol{a}}{\tan \theta}\end{aligned} \overrightarrow{\boldsymbol{B}}=-\frac{\mu_{0} n I}{2} \int_{\theta_{1}}^{\theta_{2}} \sin \theta d \theta \bar{z}=\frac{\mu_{0} n I}{2}\left[\cos \theta_{1}-\cos \theta_{2}\right] \bar{z}$

$$
\text { where } \cos \left(\theta_{1}\right)=\frac{z_{1}}{\sqrt{a^{2}+z_{1}^{2}}} ; \quad \cos \left(\theta_{2}\right)=\frac{z_{2}}{\sqrt{a^{2}+z_{2}^{2}}}
$$

Solenoids. How uniform the field is.

Solenoids. How uniform the field is.

Solenoids. How uniform the field is.

Solenoids. How uniform the field is.

To create the uniform field in solenoid you need you need to wind a long coil with $L \gg R$

Solenoids vs. Helmholtz coil.

Basics of Electricity and Magnetism

Hendrik Antoon Lorentz 1853-1928

Lorentz Force

Lorentz force is force provided by the electrical field \vec{E} and magnetic field \vec{B} on the moving with velocity \vec{v} charged particle carrying the charge q

$$
\overrightarrow{\boldsymbol{F}}=q \overrightarrow{\boldsymbol{E}}+\boldsymbol{q} \vec{v} \times \overrightarrow{\boldsymbol{B}}
$$

Motion of the charge in the magnetic field
Velocity \vec{v} is perpendicular to the vector of magnetic
 field \vec{B}. Resulting force \vec{F} will work as centripetal force and the trajectory of the particle will be a circle and the radius r of it can be calculated as:

$$
q v B=\frac{m v^{2}}{r} ; r=\frac{m v}{q B}
$$

Basics of Electricity and Magnetism

In case if the particle velocity is not exactly perpendicular to the direction of the magnetic field the trajectory of the particle will be a spiral with radius

$$
r=\frac{m v_{\perp}}{q B} \quad \begin{aligned}
& \text { and it will move } \\
& \text { with the velocity } \\
& \vec{v}_{\|}
\end{aligned}
$$

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. X-rays tube.

Nobel prize in Physics 1901 "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him'

Wilhelm Conrad Röntgen 1846-1923

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. X-rays tube.

Owen Willans Richardson 1879-1959

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

"Drift Tube Linac" 1927

The acceleration works in between the electrodes in gap. Increment of the kinetic energy $d W$ can be calculated as: $d W=q \frac{\partial \boldsymbol{E}_{z}}{\partial z} \quad$ and total energy earned by particle traveling across the gap:

$$
\Delta W=q \int \frac{\partial E_{z}}{\partial z} d z=q \Delta V
$$

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

Now we have several steps of acceleration (two gaps in this figure) and we applying now ac electrical field $V \sin (\omega t)$ and $\Delta W=q V \sin (\omega t)$ and it means that not all particle will be accelerated but only those which entered the gap in proper phase. The next step of acceleration will be done while traveling across the next gap and to be successfully accelerated the particles should come the second gap in correct phase and this imply the proper distance L in between two gaps. The time of traveling to the next gap t_{i} should equal to half period of the applied rf voltage:

$$
t_{i}=\frac{T}{2}=\frac{\pi}{\omega}=\frac{L_{i}}{v_{i}} \quad, \text { where } v_{i} \text { is the speed of the approaching the next gap }
$$

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

The time of traveling to the next gap t_{i} should equal to half period of the applied rf voltage:

$$
t_{i}=\frac{T}{2}=\frac{\pi}{\omega}=\frac{L_{i}}{v_{i}}, \text { where } v_{i} \text { is the speed of the approaching the next gap }
$$

$$
L_{i}=\frac{\pi}{\omega} v_{i} ; \text { and in relativistic case } v_{i}=\beta_{i} c \text { where } c \text { is speed of the light }
$$

in a vacuum and $\beta_{i}=\sqrt{1-\frac{1}{\gamma_{i}^{2}}}=\sqrt{1-\left(\frac{E_{0}}{E}\right)^{2}} ; \gamma_{\mathrm{i}}$ - Lorentz factor; E_{0} - rest energy
E - total energy $E=E_{0}+W ; W$ kinetic energy of accelerated particle
$\underset{19}{\text { For electron }} \boldsymbol{E}_{\mathbf{0}}=\mathbf{5 1 1} \mathbf{~ k e V}$

Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

Basics of Electricity and Magnetism. Applications.

Generating od electromagnetic waves of different frequencies.

frequency
v (hertz)
-10^{25}

Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Gunn Diode.

J. B. Gunn 1928-2008

Energy band structure of GaAs showing the band gap and the energy separations between the different valleys and (b) current versus electric field characteristics of the bulk material showing the threshold field Eth above which negative differential conductance appears

Frequency range: $10 \mathrm{GHz} \div 1 \mathrm{THz}$ Output power ~200mV

Applications:
airborne collision avoidance system
Car radar detector

Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Klystron.

Russell Varian 1898-1959

Sigurd Varian 1901-1961

Patented May 20, 1941
2,242,275

UNITED STATES PATENT OFFICE

2,242,275

ELECTRICAL TRANSLATING SYSTEM AND METHOD
(14)
varian

Russell H. Varian, Stanford University, Calif., assignor to The Board of Trustees of The Leland Stanford Junior University, Stanford University, Calif., a corporation of Callfornia
Annlimation חatahare 11 1927 Capial Na 1 ce 255

Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Klystron.

Single transit klystron

Reflection klystron

Advantages: well defined frequencies, high power output

Basics of Electricity and Magnetism. Applications.

2K25

Generating of electromagnetic waves. Microwaves. Klystron.

0.44 Amperes 25 mW
$\mathbf{8 , 5 0 0}$ to $\mathbf{9 , 6 6 0} \mathbf{M H z}$
6.3Volts

400 kW klystron used for spacecraft communication at the Canberra Deep Space Communications Complex.

Basics of Electricity and Magnetism

Generating of electromagnetic waves. Microwaves. Magnetron.

Microwave oven magnetron; typical power $0.7-1.5 \mathrm{~kW}$

Homework

Quadrupole static electrical charges configuration with charges locations:
$\mathrm{a} / 2, \mathrm{a} / 2,0 \quad-1$
$-\mathrm{a} / 2, \mathrm{a} / 2,0 \quad+1$
$-\mathrm{a} / 2,-\mathrm{a} / 2,0 \quad-1$
$\mathrm{a} / 2,-\mathrm{a} / 2,0 \quad-1$

Calculate the electrical field distribution along the lines: $\mathrm{a} / 2, \mathrm{a} / 2, \mathrm{z} ;-\mathrm{a} / 2, \mathrm{a} / 2, \mathrm{z}$ and $0,0, \mathrm{z}$

