
Introduction to theoretical 
models of  superconductivity 



Two key features of superconductrs: Superconductivity is based on two basic phenomena. The most important key
property of superconductivity is the Meissner effect, which is the expulsion of magnetic fields from the space filled by a
superconducting material. The second important signature of superconductors is their zero resistance. Our goal is to learn
some simple mathematical models used to describe these and related phenomena.

Meissner effect Zero resistance at low temperature

https://en.wikipedia.org/wiki/Meissner_effect

https://hst-
archive.web.cern.ch/archiv/HST2001/accelerators/superconduc
tivity/superconductivity.htm



Superconducting Condensate: The basic idea is to treat superconductors as quantum systems in which all electrons in the
sample can be described by the same wave function, which is analogous to the wave function of just one electron. Such
behavior is called coherent behavior. (A more familiar example would be a laser, in which case all photons emitted by the
laser are described by the same wave function, with the same frequency, the same wavelength and the same phase.) For a
device, to become superconducting, it is sufficient to have a macroscopic fraction of all its electrons to behave coherently.
For example, at higher temperatures the fraction of the electrons participating in the superconducting condensate wave
function diminishes and actually goes to zero at T=Tc.

Microscopic theory was developed by Bardeen Cooper and Schrieffer (BSC). The BCS theory is quite complicated and so it is
beyond the scope of this course. Fortunately, it is possible to take a simplified approach and use a simple model, analogous
to the Schrodinger equation, to describe superconductors, at least approximately.

This is how the BCS wave function is constructed:

This formula is presented as an illustration only.



http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/meis.html
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In superconductors, the magnetic field penetration depth or London penetration depth (sometimes denoted as λL) 

characterizes the depth to which an external magnetic field penetrates the superconductor. Magnetic field decays 

exponentially, as a function of distance from the surface. The penetration length, λL, is chosen such that the magnetic 

field at this depth equals to B0/e , where e=2.718 and B0 is the magnetic field at the surface of the superconductor. 

Typical values of λL range between 50 to 500 nm, as the table below illustrates.

Magnetic field penetration depth and coherence length

Type II superconductors are those in which lambda>ksi. Such superconductors support vortices.

https://en.wikipedia.org/wiki/High-temperature_superconductivity

https://en.wikipedia.org/wiki/Superconductors
https://en.wikipedia.org/wiki/Magnetic_field


The London penetration depth results from considering the London equation and Ampère's 

circuital law. To make this discussion quantitative, consider a superconducting half-space, i.e a 

superconducting for x>0, and vacuum for x<0. An external magnetic field B0 applied along z

direction in the empty space x<0, then inside the superconductor the magnetic field is given by:

Here x is the depth inside the superconductor. Here λL is the distance or the depth into the superconductor in 
which the magnetic field becomes e times weaker. Here e=2.718.

The London penetration depth, λL, is derived for clean and pure superconductors, without any crystal 

lattice defects or disorder. The result is: 𝜆𝐿 =
𝑚

𝜇0𝑛𝑠𝑒
2

Here m is the mass of the electrons in the superconductor, e is the electronic charge, and ns is the number density of 

superconducting electrons in the given superconducting material. The number density, n, is also called superfluid 

density. The electron density for Al, for example, is 1.8x1029 m-3.

x

z

https://en.wikipedia.org/wiki/London_equations
https://en.wikipedia.org/wiki/Amp%C3%A8re's_circuital_law
https://en.wikipedia.org/wiki/Half-space_(geometry)


Maxwell’ equations 
(we will need some of them to derive lambda)

Maxwell's equations, are a set of coupled partial differential equations that, together with the Lorentz 
force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The 
equations provide a mathematical model for electric, optical, and radio technologies, such as power 
generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and 
magnetic fields are generated by charges, currents, and changes of the fields.

To explain the Meissner 

effect we will use London 

model.

It will involve:

1. Newton equation

2. Maxwell equations   

MEq1

MEq2

MEq3

MEq4

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Lorentz_force
https://en.wikipedia.org/wiki/Classical_electromagnetism
https://en.wikipedia.org/wiki/Optics
https://en.wikipedia.org/wiki/Electric_circuit
https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_current


Derivation of London formulas for the magnetic field penetration into a superconductor
Ordinary metals, which are not superconducting, are usually called “normal metals”. Normal metals behave 

according to Ohm's law, which states that current is proportional to electric field, E. 

The normal (“normal”= “not superconducting metal”) current density is

jn=σE, 
where σ is the normal metal conductivity.

However, such a linear relationship is impossible in a superconductor for, almost by definition, the 

electrons in a superconductor flow with no resistance whatsoever. So the electrons have to be treated as free 

particles, under the influence of a uniform external electric field. Free particles are described by the Newton 

equation:

m(dv/dt)=F=eE or        dv/dt = eE /m (1)

where dv/dt is the time derivative of the velocity, i.e., the acceleration, F is the force acting on each electron. 

The force, according to the rules of the Coulomb interaction, is given by the charge, e, multiplied by the electric 

field, E.

Next step, we need to express the superconducting current (“supercurrent”), js, through the density of 

the superconducting electrons, ns.

js =evns (2)

If we now combine Eq.1 and Eq.2 we get the first equation which governs the dynamics of supercurrent:

(∂js / ∂t) = Ee2ns/m                                                             (3)

https://en.wikipedia.org/wiki/Ohm's_law


Derivation of London formulas for the magnetic field penetration into superconductor
Now we derive another equation, which relates the current and the magnetic field. For this we take curl of the Eq.3:

(∂/∂t)(curljs ) = e2ns(curlE)/m
Combine this with the Maxwell equation MEq3 and get:

(∂/∂t)(curljs ) = -e2ns(∂B/∂t)/m
Note: Bold letters represent vector physical quantities.

We can now rewrite as follows:

(∂/∂t)(curljs + e2ns B/m) = 0

Therefore curljs + e2ns B/m=constant
This constant might not be zero in normal metals. But it is zero in superconductors. Taking this constant to zero means 

that if there is some non-zero magnetic field then there is some non-zero current. (Fundamentally it is related to the 

fact that quantum operator of the velocity contains vector-potential.) Thus:

curljs + e2ns B/m=0                                                              (4)

And this is the second equation which describes vortex-free regime in superconductors. This equation can be 

presented in a different format if we remember that B=curlA, where A is the vector-potential. Then we get:

curl (js + e2ns A/m)=0    or 

js =- e2ns A/m (5)

Or, for the superfluid velocity we have:

vs =- e A/m (6)

This formulas (5 and 6) are applicable if the phase of the superconducting wavefunction is constant everywhere. In the 

equations 5 and 6 the gauge must be fixed as explained in the next slide.



Gauge freedom
The "field strength" physically measurable 

variables can be expressed in terms of the 

electric scalar potential φ and the magnetic 

vector potential A through the relations: . 



Choice of gauge

Thus, for the London equation to hold the gauge fixed to the "London gauge“, i.e., the vector potential obeys the following 

requirements, ensuring that it can be interpreted as a current density:

∇ ⋅ A = 0 

A = 0 in the superconductor bulk,

A ⋅ n = 0 where n is the normal vector at the surface of the superconductor.

The first requirement, also known as Coulomb gauge condition, leads to the constant superconducting electron density, 

ns=const, as expected from the continuity equation. The second requirement is consistent with the fact that supercurrent 

flows only near the superconductor surface. The third requirement ensures no accumulation of superconducting electrons on 

the surface. These requirements do away with all gauge freedom and uniquely determine the vector potential. 

Consider again Eq.5: js =- e2ns A/m

The current density is a well defined measurable physical quantity. The vector potential is not. It can be changed by a 

adding a gradient of any smooth scalar function because the magnetic field is the curl of the vector potential. 



Derivation of the Meissner effect

Start with the equation derived above (Eq.5)                   js =- e2ns A/m (5)

Use Maxwell equation MEq4:   curlB=μ0js

Also, remember the definition of the vector-potential A. It is defined as curlA=B

Thus ,the new equation becomes:

(1/μ0) curlB =-( e2ns /m ) A

(1/μ0) curl(curlB) =-( e2ns /m ) curlA=-( e2ns /m ) B

Remember that divB=0 (Meq.2). Therefore curl(curlB)=-ΔB

So, the equation for the magnetic field inside superconductor is:

(1/μ0) ΔB=( e2ns /m ) B

Let us take a simplified example. Suppose the magnetic field depends only on one coordinate, say on the x-

axis. The direction of the magnetic field is along the z-axis. So, the magnetic field is B=B(x)ez, where ez is the 

unit vector along the z-axis. Then the equation becomes simpler:

(d2/dx2)B=( e2 μ0 ns /m )B

The solution is B=B0exp(-x/λL), where B0 is the magnetic field at the surface and (λL )
2= m/(e2 μ0 ns ) is the 

London penetration depth.

Let us make a numerical estimate for the penetration depth (in SI units):

m=9.1x10-31 kg is the electronic mass

e=1.6x10-19 C is the electronic charge is the magnetic constant

ns is difficult to know exactly. We take the density of the conduction electrons in Nb: ns=5.56x1028 m-3

With this we get λL =23 nm. London length is a good estimate for the magnetic field penetration depth in 

the case of very pure, perfect crystal metallic samples. But it is not exact in this simple model.


