
Superconducting magnetic 
field sensors: SQUID



SQUID – superconducting quantum interference device
SQUID helmet project at Los Alamos

SQUIDs, or Superconducting Quantum Interference Devices, invented in 1964 by Robert Jaklevic, John Lambe, Arnold Silver, and James 

Mercereau of Ford Scientific Laboratories, are used to measure extremely small magnetic fields. They are currently the most sensitive 

magnetometers known, with the noise level as low as 3 fT•Hz−½. While, for example, the Earth magnet field is only about 0.0001 Tesla, 

some electrical processes in animals produce very small magnetic fields, typically between 0.000001 Tesla and 0.000000001 Tesla.

SQUIDs are especially well suited for studying magnetic fields this small. 

Measuring the brain’s magnetic fields is even much more difficult because just above the skull the strength of the magnetic field is only 

about 0.3 picoTesla (0.0000000000003 Tesla). This is less than a hundred-millionth of Earth’s magnetic field. In fact, brain fields can be 

measured only with the most sensitive magnetic-field sensor, i.e. with the superconducting quantum interference device, or SQUID. 

Magnetic field scales:

Earth field: ~1G

Fields inside animals:

~0.01G-0.00001G

Fields of the human brain:

~0.3nG

This is less than a hundred-

millionth of the Earth’s 

magnetic field.

https://ww
w.newswise.
com/articles
/los-alamos-
unveils-
new-brain-
imaging-
system

NanoGallery.info - Superconducting Helmet. SQUID used to measure brain 
magnetic fields

https://www.nanogallery.info/nanogallery/?ipg=156


Superconducting quantum interference device: SQUID 

𝛥𝜑21 + 𝛥𝜑32 + 𝛥𝜑43 + 𝛥𝜑14 = 2𝜋𝑛

Here the blue color is a bulk superconductor, the white color represents empty space, dashed region is the insulator through 

which electrons transit by quantum tunnel.

The dashed black line is a contour over which we calculate the phase change. The phase accumulation on a closed contour 

like this one must be zero or 2πn, where n is an integer. This is required because the wavefunction must be a single-value 

function.

Since the wave function is a single-valued function, the total phase accumulation must satisfy the following formula:

2

1

3

4

I

I

Josephson junctions



Superconducting Condensate:

Reminder: The time-dependent Schrodinger equation is: 𝑖ℏ
𝑑

𝑑𝑡
Ψ =  𝐻Ψ= EΨ

If E=0 then the wave function is constant. This is the key for understanding superconductivity..

This equation is originally developed for a single electron. In a superconductor, the number of superconducting electrons is
very large and they all act in unison, i.e. coherently. One way to understand superconductivity is to assume that all the
electrons glue together into a superconducting condensate which then act as just one quantum particle described by a wave
function Ψ. Although in the quantum devices, such as qubits, superpositions of states with different energies is possible, in
most superconducting devices, such as solenoids and SQUIDs the energy of the system is well defined, i.e. the equation
 𝐻Ψ= EΨ is valid. So, in this lecture we assume that superconducting electrons are in their ground state, which is a stationary
state.

-If no voltage is applied, The energy E is usually the minimum possible energy (ground state). Thus, finding the
wavefunction of superconducting electrons is equivalent to finding the ground state of one electron.

The ensemble of all superconducting electrons, i.e., those which have the same wavefunction, is called “superconducting
condensate”. It can be treated as just one electron, except that the normalization is different: The electronic density equals the
square of the wave function

𝑛𝑠 = |𝜓|2

Thus, to understand superconductivity at the very basic level we can think of just one electron, solve the corresponding
time-independent Schrodinger equation (with the vector potential included), find the wave function and normalize the wave
function to the density of the superconducting electrons, which is material-specific. Using the wave function we can calculate
all other physical quantities of interest, such as the electric current for example.

Superconducting condensate described as a quantum system



Superconducting Condensate: Since there are many superconducting electrons in a typical superconductor device, and all
of these electrons are described by the same wave function (all are “coherent”), therefore the module squared of the wave
function equals the density of the superconducting electrons 𝑛𝑠 𝒓 = |𝜓(𝒓)|2. Such density is sometimes called “superfluid
density”. Thus, the density of the electric charge is 𝜌 𝒓 = 𝑒∗|𝜓(𝒓)|2 , where 𝑒∗ is the effective charge of superconducting
electrons, which is twice the charge of one electron (-e), i.e, −𝑒∗= −2𝑒 or 𝑒∗ = 2 𝑒 > 0 . The most important parameter is
the electric current. The electric current density, j(r), is the charge density multiplied by the velocity of the superconducting
condensate, i.e., j(r)=v(r)𝜌 𝒓 = v(r) 𝑒

∗
|𝜓 𝒓 |2. To define the electric current density, j, we need to know the superfluid

velocity, v, and the superfluid density, 𝑛𝑠. These quantities can be calculated if the wavefunction in know.

The simplest wave function is the plane-wave wave-function. It describes homogeneous supercurrent in a superconductor.
Mathematically it is written as: 𝜓= 𝜓0exp[ikr]=𝜓0exp[ipr/ ℏ]. If there is no voltage, then E=0, then the quantum state is not
changing in time. Therefore, we use a time independent wave function in many cases.

In classical electrodynamics it is known that the canonical momentum of a charge particles is determined as:
𝒑 = 𝑚∗𝒗 − 𝑒∗𝑨

And the Hamiltonian (explained in next two slides) is:

𝐻 =
𝑚∗𝒗2

2
=
(𝑚∗𝒗)2

2𝑚∗ =
𝒑 + 𝑒∗𝑨 𝟐

2𝑚∗

Supercurrent, superfluid velocity, charge density

Here the charge of the superconducting particle is take as –e*

Diamagnetic graphite levitationhttps://www.imagesco.com/magnetism/graphite-levitation-kit.html



Charged particle in magnetic field: classical physics

notes09c.pdf (sunysb.edu)
http://insti.physics.sunysb.edu/itp/lectures/01-Fall/PHY505/09c/notes09c.pdf

http://insti.physics.sunysb.edu/itp/lectures/01-Fall/PHY505/09c/notes09c.pdf


Charged particle in magnetic field: classical physics

notes09c.pdf (sunysb.edu)
http://insti.physics.sunysb.edu/itp/lectures/01-Fall/PHY505/09c/notes09c.pdf

http://insti.physics.sunysb.edu/itp/lectures/01-Fall/PHY505/09c/notes09c.pdf


In QM we replace momentum with momentum operator.

Velocity operator in quantum mechanics is: 𝑚∗  𝑣 = −𝑖ℏ𝛁 + 𝑒∗𝑨

Magnetic field and vector-potential: 𝑩 = 𝑐𝑢𝑟𝑙𝑨

Here 𝑚∗ is the effective mass of the charge carriers

and 𝑒∗ is the effective charge carriers in the 

superconductor.

Since electrons form pairs in the superconductor, we may 

choose 

𝑚∗=2m and 𝑒∗=2e. 

Transition to quantum mechanics: Mathematic description of the supercurrent

Consider the case when the wavefunction such that its amplitude is approximately constant: 𝜓 = 𝜓0

Therefore, the wave function can be written as:𝜓 = 𝜓0𝑒
𝑖𝜑 = 𝜓0𝑒

𝑖𝑝𝑥/ℏ The phase, 𝜑, is a function of coordinates.

Now let us calculate the superfluid velocity, 𝒗, mean value 

(“expectation value”): 𝑛𝑠𝑚
∗𝒗 = 𝜓∗(𝑚∗  𝑣)𝜓 = 𝜓0𝑒

−𝑖𝜑(−𝑖ℏ𝛁 + 𝑒∗𝑨)𝜓0𝑒
𝑖𝜑

Note that the superconducting electron density is: 𝑛𝑠 = 𝜓∗𝜓 = 𝜓0
2

Expression for the supercurrent density: 𝒋 = 𝑒∗𝑛𝑠𝒗 = (𝑒∗/𝑚∗) 𝑛𝑠𝑚
∗𝒗

𝑚∗𝒗 = 𝑒−𝑖𝜑 ℏ𝛁𝜑 + 𝑒∗𝑨 𝑒𝑖𝜑 = ℏ𝛁𝜑 + 𝑒∗𝑨

Correspondingly, the phase gradient is: 𝛁𝜑 +
𝑒∗𝑨

ℏ
=

𝑚∗

ℏ𝑒∗𝑛𝑠
𝒋 =

𝑚∗

ℏ
𝒗

𝒋 = 𝑒∗𝑛𝑠𝒗 = (𝑒∗/𝑚∗)𝑛𝑠 ℏ𝛁𝜑 + 𝑒∗𝑨Equation for the supercurrent:



Gauge transformation: Suppose we change the vector potential by a gradient of a function, as follows:

𝑨′= 𝑨 + 𝛁𝜒

With such transformation the vector potential the magnetic field remains the same: 𝐵′= 𝑐𝑢𝑟𝑙 𝑨 + 𝛁𝜒 = 𝑐𝑢𝑟𝑙𝑨 = 𝑩

With such gauge transformation all physical quantities remain unchanged, including the velocity. To calculate the velocity at

each point in the superconductor we need to use the collective wave function of superconducting electrons. With the gauge 

transformation presented above the phase of the wavefunction also changes. The change of the phase must compensate the 

transformation of the vector potential in such a way that the local superfluid velocity is not changed.

Gauge invariance

Under the gauge transformation, the phase of the wave function is changed to   . From the previous slide,

𝑚∗

ℏ𝑒∗𝑛𝑠
𝒋 =

𝑚∗

ℏ
𝒗 = 𝛁𝜑 +

𝑒∗𝐀

ℏ
= 𝛁𝜑′ +

𝑒∗𝐀′

ℏ
⇒ 𝛁(𝜑′ − 𝜑) +

𝑒∗

ℏ
(𝐀′ − 𝐀) = 0,

which is simplified to 𝛁 𝜑′ − 𝜑 +
𝑒∗𝜒

ℏ
= 0 , and so

𝜑′ = 𝜑 −
𝑒∗

ℏ
𝜒

𝜑′



Josephson junction (JJ) in zero magnetic field
JJ is formed by two superconductor placed very close to each other but separated by a very thin (a few Angstroms) 

insulating barrier.

A supercurrent I can flow, horizontally, from the left superconductor to the superconducting block on the right through the 

insulating barrier (dashed region). The current is due to the quantum tunneling effect. The formula for the current (in the 

case when vector potential is zero) is: 𝐼 = 𝐼𝑐 sin Δ𝜑 where Δ𝜑 is the phase difference and 𝐼𝑐 is the critical current, i.e., the 

maximum possible supercurrent. Note that the current is controlled by the phase difference and not by the voltage as in 

normal circuits.

The arrow shows the trajectory over which we calculate the phase difference, as follows:

insulator superconductorsuperconductor

Δ𝜑 =  
1

2

𝜵𝜑𝑑𝒍 =𝜑𝟐 − 𝜑𝟏

1 2

The formula above is true when the magnetic field is zero and the vector potential is zero. Also, it assumes the phase is 

constant within the bulk of the superconductor. 

Supercurrent is defined by the phase difference

Δφ = φ2 – φ1 between the two superconductors:

Is=Icsin(Δφ)=Icsin(Δφ21)

This current is flowing through the insulator barrier 

without any voltage applied. Here Ic is the critical 

current, which is a constant for a given junction.

𝜓0𝑒
𝑖𝜑

2
𝜓0𝑒

𝑖𝜑
1



Josephson junction (JJ) in presence of magnetic field

𝛥𝜑′ =  1
2
𝜵𝜑𝑑𝒍 −

𝑒∗

ℏ
 1
2
𝜵𝜒𝑑𝒍 = 𝛥𝜑 −

𝑒∗

ℏ
 1
2
𝑨𝒅𝒍

The phase difference,Δφ, depends on the choice of the gauge. Yet, the supercurrent must not depend on the choice of the 

gauge. Therefore, the expression for the supercurrent needs to be modified as follows:

𝐼 = 𝐼𝑐 sin Δ𝛾
Where Δ𝛾 is so-called gauge invariant phase difference. In the example we consider in the previous slide Δ𝛾= Δφ in the 

gauge choice in which vector potential is zero. Now we transition to a different gauge, 𝑨 = 𝛁𝜒. Under such gauge 

transformation the phase changes to a different value 𝜑′, defined by 𝜑′ = 𝜑 −
𝑒∗

ℏ
𝜒. Therefore, the phase difference 

becomes 

But the supercurrent must not change since all physical quantities are invariant under gauge transformations.
Thus, we introduce a gauge invariant phase difference such that it is equivalent to the phase difference at zero gauge but 

remains unchanged as we change the gauge. This gauge invariant phase difference is:  Δ γ.

Δ𝛾= Δφ +
𝑒∗

ℏ
 1
2
𝑨𝒅𝒍

With such definition we achieve the required invariance Δ𝛾= Δ𝛾′ because 

Δ𝛾′= Δφ′ +
𝑒∗

ℏ
 1
2
𝑨𝒅𝒍 = 𝛥𝜑 −

𝑒∗

ℏ
 1
2
𝑨𝒅𝒍 +

𝑒∗

ℏ
 1
2
𝑨𝒅𝒍 = 𝛥𝜑= 𝛥γ



dc SQUID simple model

𝛥𝜑21 + 𝛥𝜑32 + 𝛥𝜑43 + 𝛥𝜑14 = 2𝜋𝑛

Here the blue is bulk superconductor, white is empty space, dashed region is the insulator through which electrons transit by

quantum tunnel.

The dashed black line is a contour over which we calculate the phase change. The phase accumulation on a closed contour 

like this one must be zero or 2πn, where n is an integer. This is required because the wavefunction must be a single-value 

function.

The total phase accumulation is 

Δ𝜑21 = Δ𝛾21 −
𝑒∗

ℏ
 
1

2

𝑨𝒅𝒍

The integral of the vector potential over a circle is the magnetic flux through the SQUID loop:

Δ𝜑43 = Δ𝛾43 −
𝑒∗

ℏ
 
3

4

𝑨𝒅𝒍

 1
2
𝑨𝒅𝒍 +  1

2
𝑨𝒅𝒍+  1

2
𝑨𝒅𝒍+  1

2
𝑨𝒅𝒍= 𝛷

2

1

3

4

I

I

Magnetic flux definition: 𝛷 = AloopB. Here Aloop is the area of the loop (the dashed line contour) and B is the magnetic field 

applied perpendicular to the loop. 



dc SQUID simple model

Δ𝛾21 −
𝑒∗

ℏ
 
1

2

𝑨𝒅𝒍 + 𝛥𝜑32 + Δ𝛾43 −
𝑒∗

ℏ
 
3

4

𝑨𝒅𝒍 + 𝛥𝜑14 = 2𝜋𝑛

Δ𝜑21 = Δ𝛾21 −
𝑒∗

ℏ
 
1

2

𝑨𝒅𝒍

The integral of the vector potential over a circle is the flux through the SQUID loop:

Δ𝜑43 = Δ𝛾43 −
𝑒∗

ℏ
 
3

4

𝑨𝒅𝒍

 1
2
𝑨𝒅𝒍 +  2

3
𝑨𝒅𝒍 +  3

4
𝑨𝒅𝒍 +  4

1
𝑨𝒅𝒍 = Φ

Remember the expression for the supercurrent: 𝒋 = 𝑒𝑛𝑠𝒗 = (𝑒∗𝑛𝑠/𝑚
∗) ℏ𝛁𝜑 + 𝑒∗𝑨

But in bulk superconductor the supercurrent is zero due to Meissner effect: 𝒋 = 0

Therefore: ℏ𝛁𝜑 = −𝑒∗𝑨

Therefore, the phase accumulation in the 

superconductor bulk is:
𝛥𝜑32 =  

2

3

𝛁𝜑𝒅𝒍 = −(
𝑒∗

ℏ
) 

2

3

𝑨𝒅𝒍 𝛥𝜑14 =  
4

1

𝛁𝜑𝒅𝒍 = −(
𝑒∗

ℏ
) 

4

1

𝑨𝒅𝒍

Δ𝛾21 −
𝑒∗

ℏ
 
1

2

𝑨𝒅𝒍 − (
𝑒∗

ℏ
) 

2

3

𝑨𝒅𝒍 + Δ𝛾43 −
𝑒∗

ℏ
 
3

4

𝑨𝒅𝒍 − (
𝑒∗

ℏ
) 

4

1

𝑨𝒅𝒍 = 2𝜋𝑛

Final result for SQUID: Δ𝛾21 + Δ𝛾43 =
𝑒∗

ℏ
Φ + 2𝜋𝑛 =

𝑒∗

ℏ
Φ + 2𝜋𝑛 = 2𝜋

Φ

𝜙𝟎
+ 2𝜋𝑛

Here 𝜙0 =
ℎ

𝑒∗
is the magnetic flux quantum, which is a constant.  Usually, n=0 to minimize energy.



dc SQUID critical current

Now we can compute the total supercurrent trough the SQUID, using the formula Δ𝛾21 + Δ𝛾43 = 2𝜋Φ/𝜙0 + 2𝜋𝑛

𝐼 = 𝐼𝑐 sin Δ𝛾21 + 𝐼𝑐 sin Δ𝛾34 = 𝐼𝑐 sin Δ𝛾21 − 𝐼𝑐 sin(2𝜋Φ/𝜙0 + 2𝜋𝑛 − Δ𝛾21) =
𝐼𝑐 sin Δ𝛾21 − 𝐼𝑐 sin(2𝜋Φ/𝜙0 − Δ𝛾21) =
𝐼𝑐 sin Δ𝛾21 + 𝐼𝑐 sin(Δ𝛾21 −2𝜋Φ/𝜙0) =

𝐼𝑐 sin Δ𝛾21 + sin(Δ𝛾21 −2𝜋Φ/𝜙0) = 2𝐼𝑐 cos(
𝜋Φ

𝜙0
) sin Δ𝛾21 −

𝜋Φ

𝜙0

The critical current of the entire SQUID, as a function of magnetic flux is: 𝐼𝑐,𝑆𝑄𝑈𝐼𝐷 = 2𝐼𝑐 |cos
𝜋Φ

𝜙0
|

Note that the critical current is, by 

definition, always positive. It is the 

maximum current which SQUID can 

sustain with zero voltage applied to it. 

Δ𝛾43 = −Δ𝛾34

To find the critical current one needs to find the maximum possible value of the 

supercurrent for all possible choices of the phase difference Δ𝛾21 .

Ic(B)/Ic(0)


